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Abstract

Behavior genetics is a controversial science. For decades, scholars have sought to understand
the role of heredity in human behavior and life-course outcomes. Recently, technological
advances and the rapid expansion of genomic databases have facilitated the discovery of
genes associated with human phenotypes such as educational attainment and substance use
disorders. To maximize the potential of this flourishing science, and to minimize potential
harms, careful analysis of what it would mean for genes to be causes of human behavior is
needed. In this paper, we advance a framework for identifying instances of genetic causes,
interpreting those causal relationships, and applying them to advance causal knowledge
more generally in the social sciences. Central to thinking about genes as causes is counterfac-
tual reasoning, the cornerstone of causal thinking in statistics, medicine, and philosophy. We
argue that within-family genetic effects represent the product of a counterfactual comparison
in the same way as average treatment effects (ATEs) from randomized controlled trials
(RCTs). Both ATEs from RCTs and within-family genetic effects are shallow causes: They
operate within intricate causal systems (non-unitary), produce heterogeneous effects across
individuals (non-uniform), and are not mechanistically informative (non-explanatory).
Despite these limitations, shallow causal knowledge can be used to improve understanding
of the etiology of human behavior and to explore sources of heterogeneity and fade-out in
treatment effects.

1. Introduction

Violent crime is endemic to human society. The second-century poet Juvenal described
Ancient Rome as having “no shortage of thieves” and “many opportunities to die” (Juvenal,
1769). Court records from thirteenth-century England show that “murderous brawls and vio-
lent death… were everyday occurrences” (Gurr, 1981, p. 305). Now, statistics suggest that 2020
was America’s “most violent year in decades,” with more than 19,000 people killed in firearm-
related incidents (Bates, 2020). Understanding why people act in violent and criminal ways
remains a societal imperative.

In a 2013 address, then-President Barack Obama offered one possible avenue for reducing
crime: improving early childhood education. “Every dollar we invest in high-quality early
childhood education,” said Obama, “can save more than $7 later on by … reducing crime”
(Obama, 2013). At its core, this statement communicates the causal hypothesis that high-
quality childhood education will reduce crime. This hypothesis about a cause–effect relation-
ship takes the form of a counterfactual statement about what could be. If the availability of
high-quality childhood education were different, Obama predicts, then crime rates would
also be different.

As social scientists, one of our primary aims is to produce research that verifies or chal-
lenges these sorts of causal claims. We examine evidence as to whether a causal relationship
exists between two variables, offer theories for interpreting causal associations, and evaluate
whether causal knowledge can be effectively applied to improve public health and well-being.
As we will explain in this paper, this process of evaluating causes in social science relies heavily
on counterfactual thinking, and it often begins by manipulating a variable in a randomly
selected group of people. As we will also explain in this paper, this process of evaluating causes
in social science is not limited to environmental exposures such as early childhood education.
The same process of evaluating causes applies even when the causes in questions are variables
less commonly considered by social scientists: genes.

1.1. Environmental causes in the social sciences: An empirical example

In the early 1960s, disadvantaged children living in Ypsilanti, Michigan were randomly
assigned to an intensive two-year preschool education program (High/Scope Perry
Preschool Program [HPPP]) that involved over two hours of daily active learning and weekly
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home visits from teachers (Schweinhart, Barnes, & Weikart,
1993). Children of the same age and socioeconomic background
who were not assigned to this program received no preschool edu-
cation. All participants were assessed throughout the first 40 years
of life to determine the effects of the education program on out-
comes such as educational attainment, economic earnings, and
criminal behavior (Belfield, Nores, Barnett, & Schweinhart, 2006).

This methodological design, known as a randomized con-
trolled trial (RCT), serves as the gold standard for validating
the sorts of causal claims advanced by President Obama. By ran-
domly assigning participants to different levels of a manipulated
variable (in this case, preschool education), researchers were
able to approximate the counterfactual scenario of what would
have happened if conditions had been different. We can observe
both the rate of criminal behavior in those who were given the
treatment of better education and the rate of criminal behavior
among children whose lives proceeded as usual (the control
group). Relative to the control group, those children who partic-
ipated in the high-quality preschool education program received
over 50% fewer total arrests and over 80% fewer charges for vio-
lent crimes by age 40 (estimates based on data presented in
Heckman, Moon, Pinto, Savelyev, & Yavitz, 2010). Because of
the experimental design of this study, we can conclude that
President Obama was correct: improving early childhood educa-
tion caused a reduction in adult criminal outcomes.

This conclusion is more meaningful than merely observing a
correlation between attending preschool and (not) committing
crimes. As social scientists, we privilege inferences about causal
relationships over such correlational ones and believe that they
reveal something unique about the world. As this paper will
show, the conclusion that good preschool education causes an
average reduction in adult criminal behavior is distinctive, but
how we interpret and apply this knowledge depends on the
type of causation implied by experimental designs.

To further illustrate both the power and the limitations of this
causal knowledge, consider that of the six individuals from the
HPPP study who went on to incur the greatest number of lifetime
criminal charges, three of them had actually participated in the
preschool education program (Heckman et al., 2010). So, despite
being exposed to a program that “causes” a reduction in criminal
behavior, these individuals nevertheless received a total of 110
criminal charges between them. At the same time, the specific

mechanisms underlying the effect of preschool education on
crime are opaque. Indeed, researchers were surprised to observe
the effects of preschool on adult outcomes, as the benefits of the
intervention had appeared to fade out entirely in middle childhood
(Heckman, 2006). Whatever intermediary process linked an educa-
tional experience at age four with a behavior committed (or not
committed) by age 40 is not known (Schneider & Bradford,
2020). Clearly then, the causation implied by the experimental par-
adigm does not suggest that preschool education is the sole deter-
minant of a person’s lifetime criminal behavior, nor that the
criminal behavior of any single individual can be attributed to
the preschool education they received, nor does it explain anything
about the mechanisms generating individual differences in the rela-
tionship between preschool education and criminal behavior.

Nevertheless, knowing that preschool education makes an
average difference in adult criminal behavior is useful. Most
directly, this knowledge has led to calls for policy changes in
the United States to develop and disseminate childhood education
programs. That is, the most straightforward application of the
observation that changing X produced an average difference in
Y is to develop intervention and prevention programs that target
X on a large scale. In this paper, we refer to this application as
first-generation causal knowledge. Knowing that X caused Y in
one group of people implies that one could change Y in future
groups of people by changing X.

As many interventionists and policymakers can attest, however,
first-generation causal knowledge can be quite limited (Bryan,
Tipton, & Yeager, 2021). Treatment effects often fail to sustain
over time, to generalize to other samples, or to behave in predicted
ways (Bailey, Duncan, Cunha, Foorman, & Yeager, 2020). Further,
even when these effects show maintenance and durability across
time and place, they often operate through unobserved mecha-
nisms, obfuscating deep understanding of the effect. We may
know that improved preschool education caused decreases in
crime, but we have limited understanding of for whom this effect
will hold, why it holds, for how long it will last, or how portable
this effect will be across contexts. Indeed, recent RCTs of preschool
programs for children from low-income families have found sur-
prising adverse effects of preschool on children’s academic achieve-
ment, attendance, and disciplinary infractions (Durkin, Lipsey,
Farran, & Wiesen, 2022). Clearly, first-generation causal knowledge
is not sufficient to anticipate how an effect will play out in a differ-
ent environmental and historical context.

Overcoming this challenge requires what we refer to in this
paper as second-generation causal knowledge. By revealing sources
of heterogeneity and mechanisms supporting the durability of
causal effects, we can better understand when, where, why, for
whom, and for how long X makes some difference in Y – and
this knowledge gives us more avenues for effecting change.
Knowing that preschool education made an average difference
in adult criminal behavior is useful in the near term, because
we identify preschool education as a potential intervention target.
But we must go beyond that, examining the causal pathway from
early education to adult crime to identify other intervention tar-
gets whose manipulation might yield larger, more enduring, or
more generalizable changes in criminal behavior.

1.2. Evaluating genetic causes in the social sciences: An
impossible or worthless task?

Let us consider another causal hypothesis: certain genetic vari-
ants cause violent and criminal behavior. As evidence for this
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claim, we might point to behavior genetics research on the her-
itability of antisocial behavior (see Lahey, Waldman, &
McBurnett [1999] and Moffitt [2006] for review) and on specific
measured DNA variants that can predict antisocial behavior and
involvement with the criminal justice system (Karlsson Linnér
et al., 2021; Tielbeek et al., 2017). The suggestion that genetic
variants cause criminal behavior likely triggers a stronger intui-
tive response from many of our readers than the suggestion that
being deprived of an education in early childhood causes crim-
inal behavior. Genetic effects tend to be viewed as more essen-
tial, more natural, and more immutable than other causes
(Dar-Nimrod & Heine, 2011; Lynch, Morandini, Dar-Nimrod,
& Griffiths, 2019). Accordingly, claims about genetic causes
are more controversial, both to our fellow scientists and to the
general public, than claims about environmental ones.
Research linking genetics with human behavior (along with
some neuroscience research, which we do not address here)
has been characterized “subversive science” that has the
“power to shake the public’s faith” in “cherished ideologies” of
responsibility and equality (Fox, 2019, pp. 153, 156). As the biol-
ogist Richard Dawkins noted almost four decades ago, genes
have acquired a “sinister, juggernaut-like reputation” (Dawkins,
1982/2016, p. 12).

Genetics’ sinister reputation has historical roots. In the twen-
tieth century, results from the nascent field of behavioral genetics
were used to justify state-sponsored violence against the socioeco-
nomically disadvantaged and people of color, including forcible
sterilizations. This history is – and will likely continue to be – a
stumbling stone for those asked to consider the idea that genetic
differences between people could cause the behavioral outcomes
that are the province of social science.

Despite these fears that genetics will be misused to justify racist
and classist oppression, the search for genetic correlates of human
behavior is accelerating. The past decade has witnessed a rapid
expansion in the collection and analysis of genomic data. As of
June 2021, more than 38 million individuals had contributed
DNA to ancestry-testing companies (Janzen, 2021) and over
5,000 genome-wide association studies (GWASs) had been pub-
lished (Buniello et al., 2019). This includes GWASs of social
and behavioral phenotypes, such as educational attainment (Lee
et al., 2018), household income (Hill et al., 2019), and criminal
activity (Tielbeek et al., 2017). As ancestry-testing companies
and national biobanks continue to accrue DNA samples from
millions of individuals, and as genetic variants continue to dem-
onstrate associations with more and more biologically distal life
outcomes, scientists have an outstanding responsibility to address
the implications of genomic research.

The obvious shadow cast by the history of eugenics can make
it difficult to see another stumbling block to considering claims
about genetic causation: a widespread confusion about the basics
of causal inference, about how genetic research in humans could
ever establish causation, and about what such causal knowledge
would ever be good for, in the absence of the ability to tinker
directly with people’s genes. The goal of this paper is to resolve
this stumbling block by describing how certain genetic research
designs map onto what social scientists already know about estab-
lishing causal relationships and applying causal knowledge. By
describing a clear perspective on what it does – and does not –
mean for genes to be causes, and how that causal knowledge
can be ethically applied, we also challenge the genetic determin-
ism and essentialism that have historically characterized the per-
nicious misapplications of genetics by political extremists.

Let us consider the problem in more detail. Why might the
prospect of establishing genetic causes of human behavior seem
difficult, perhaps to the point of impossibility? Recall that the
first step for testing a cause in an RCT is to manipulate the
variable-of-interest in a randomly selected group of people. In
many corners of biology, manipulating the genome is not only
viable, but widely practiced. Researchers studying rodents, insects,
and sea and plant life commonly use gene-modification strategies
(e.g., knockout, selective breeding) as a means of gaining experi-
mental control (Nagy, Perrimon, Sandmeyer, & Plasterk, 2003).
These techniques allow for a direct assessment of the (counterfac-
tual) causal hypothesis that if the organism’s genome had been
different, the outcome would have been different too. But when
it comes to testing causal hypotheses about the human genome,
the very idea of experimental manipulation is provocative at
best and contemptible at worst. Gene-editing technologies such
as CRISPR have demonstrated that direct alteration of the
human genome is possible, but the use of these technologies on
any meaningful scale is both scientifically nascent and ethically
ambiguous (Gaskell et al., 2017). Regardless of one’s moral
appraisal of gene modification in humans, the fact remains that
at present, manipulating the genomes of a randomly selected
group of people is not a practicable option for testing hypotheses
about the genetic causes of human behavior.

Moreover, even if we concede that, at a conceptual level, genes
could cause average differences in human behavior, at a practical
level, it is not readily apparent what we would do with this knowl-
edge. As Evelyn Fox Keller wrote, “[t]he major practical interest
driving the search for the relative importance of different causal
factors in producing a given phenomenon is to be found in the
wish to effect change in that phenomenon” (Keller, 2010, p. 8).
But, for the same reasons that we discussed above, we cannot
(and should not) readily apply knowledge of genetic causes to
change the genomes of large swathes of the population in the
hopes of changing their outcomes. Indeed, many of us cannot
even engage in that thought experiment without feeling anxiety
or revulsion at the prospect. As a consequence, it might be easy
to conclude that establishing genetic causes of human behavior,
even if it could be accomplished, is not a worthwhile endeavor.
The fruit of that causal knowledge, the idea that we could change
behavior by changing people’s genes, seems poisonous.

1.3. Goals of the current paper

This skepticism about the feasibility and value of establishing
genetic causes, however intuitive and well-meaning it might be,
is mistaken. As we discuss in this paper, genetic causes are like
nearly all environmental causes investigated in social science:
they are non-uniform, non-unitary, and non-explanatory.
Indeed, most genetic causes, when appropriately identified, can
be interpreted along the same lines as average treatment effects
(ATEs) estimated from RCTs or other natural experiments.
Genetic causes, such as environmental ones, are not deterministic,
explanatory, or homogeneous across place and time, but they do
make an average difference in social and behavioral outcomes.

We also consider not just the feasibility of causal inference
about genes but also the utility of that endeavor. We propose
that knowledge about genetic effects on important life outcomes
can help us change people’s lives for the better, and that these
changes may be brought about via social science (i.e., environmen-
tal) interventions, not by manipulating genomes. Specifically, we
call attention to second-generation causal knowledge. Examining
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the causal pathways from genes to life-course outcomes allows us to
improve etiological understanding, uncover sources of heterogene-
ity in those outcomes, and identify novel targets for intervention.

2. What is a cause and how do we identify them? A brief
review of causal inference in the social sciences

For decades, the scholarly community has been polarized by how
to interpret findings from behavioral genetics (Fig. 1). For some,
the complexity of processes that span genes and behavior and the
dynamic interplay between genes and environment preclude
researchers from gleaning any sort of meaningful causal knowl-
edge from behavioral genetic research designs (Block, 1995;
Lewontin, 1974/2006; Turkheimer, 2011). For others, heritability
estimates and correlations with measured genotypes are evidence
that genes determine life outcomes (Herrnstein & Murray, 1996;
Jensen, 1969; Murray, 2020).1 And for still others, genes are nei-
ther non-causal nor supra-causal, but are rather causes of human
behavior in a more circumscribed, probabilistic sense (Bourrat,
2020; Dawkins, 1982/2016). How to decide among these compet-
ing interpretations?

We think that the seemingly intractable conversation about
how to interpret the results of behavioral genetic research can
be advanced by first considering a more general, and less contro-
versial question: how do social scientists typically think about
(non-genetic) causes and how do they go about finding them?

2.1. “No causes in, no causes out”

Determining that a relationship is causal requires more than plug-
ging data into statistical models. It requires causal concepts (Pearl,
2009). Conceptual definitions of causation have historically been
expressed in terms of active behavior – a cause “produces”
(Locke, 1690/1997), “forces” (Lakoff, 1993), and “changes”
(Charlton, 1983). Empirical tests of causation, therefore, involve

detecting such activity, and not all statistical associations are up
to the task. The familiar adage “correlation does not equal causa-
tion” is founded on precisely this principle, that a statistical asso-
ciation between two variables does not inherently demonstrate
that one of those variables produced or changed the other.
Identifying statistical causes means grounding statistical models
in causal concepts and assumptions. In other words, “no causes
in, no causes out” (Cartwright, 1995, p. 154).

The predominant causal concept in scientific thinking is the
counterfactual (Pearl, 2018). Counterfactuals refer broadly to any
hypothetical situation that describes what would have happened if
conditions had been different. In 1973, David Lewis asserted that
the counterfactual was the cornerstone of causal reasoning, arguing
that X is a cause of Y if (a) when X occurs, Y occurs and (b) in the
closest possible alternative world where X did not occur, Y also
would not have occurred (Lewis, 1973a). Boiling water causes a
tea kettle to whistle because (a) when water boils in a kettle, it whis-
tles and (b) in a close possible world where water was not boiling in
a kettle, it would not have whistled. Causation, in this view, is a mat-
ter of counterfactual dependence (Lewis, 1973b).

Counterfactual logic marked a departure from thinking about
causation in terms of the regular occurrence of two variables.
Regularity accounts of causation, which had dominated much of
the history of causal reasoning, required that for X to cause Y, Y
must invariably follow X (Hume, 1748/1999; Mill, 1843/2002).
Relying on the constant conjunction of two variables for causation,
however, is problematic. Among the problems of regularity
accounts is that they evoke the thorny concepts of necessity
(whether X must be present for Y to occur) and sufficiency
(whether X alone can bring about Y) (Hulswit, 2002; Mackie,
1965). Counterfactual definitions relieve the need for Y to be nec-
essarily or sufficiently dependent on X. Boiling water causes a tea
kettle to whistle, but it is neither necessary (we can create steam
in a kettle without boiling water), nor sufficient (if the water is boil-
ing but the spout is open, the kettle will not whistle).

Figure 1. Dimension of causal thinking in human behavioral genetics.
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Despite these strengths, the counterfactual dependence
account offered by Lewis (1973b) has limitations.2 First, it fares
no better than regularity accounts at ruling out third causal var-
iables. Borrowing an example from Woodward (2005), the read-
ing of a barometer and the occurrence of a storm are
counterfactually dependent on one another, such that if the bar-
ometer reading dropped, a storm would occur and if the barom-
eter reading had not dropped, the storm would not have occurred.
Nevertheless, they are not causally related. Both are caused by a
third variable, namely, atmospheric pressure (Woodward, 2005).
Second, counterfactual dependence does not explain the direction
of the causal effect (Brady, 2011). Observing the co-occurring
presence and absence of two variables does not reveal which of
those variables is causally responsible for the other. Third, and
perhaps most critically, the Lewis counterfactual is subject to
what Holland (1986) referred to as the fundamental problem of
causal inference: it is impossible to simultaneously observe X
and not-X. The same kettle of water cannot be boiling and not
boiling at the same time.

Manipulationist accounts of causation address some of these
limitations. Similar to Lewis’ counterfactual, manipulationist
thinking relies on hypothetically comparing what would happen
to Y under different conditions of X. Where it deviates is in
reserving causal efficacy for those counterfactual situations “that
describe how the value of one variable would change under interven-
tions that change the value of another” (Woodward, 2005, p. 15).
The critical shift here is from an emphasis on counterfactual depen-
dence to counterfactual control (Ross, 2015). Manually changing the
reading on a barometer will not cause a storm to occur because the
barometer lacks causal control over the weather (Woodward, 2005).

This subtle shift from dependence to control has important
advantages. First, it ensures that the detected relationship is not
an artifact of a common cause. If intervening on X changes Y
(or the probability of Y), then holding everything else constant,
this rules out the possibility that X and Y just happen to change
together because of Z (Ross, 2018). Second, it allows us to deter-
mine the direction of the effect. Designating one variable to be
manipulated and one to respond establishes temporal precedence
and helps to segregate cause from effect (Hill, 1965/2015). That
just leaves the fundamental problem of causal inference – how
can we simultaneously observe the changed and unchanged ver-
sions of X? For that, we need to create parallel worlds.

2.2. Parallel worlds and potential outcomes

In the United States, more than 256,000 children and adolescents
have witnessed or died from school shootings in the past two
decades (Cox, Rich, Chiu, Muyskens, & Ulmanu, 2018). The
median age of assailants is 16 years old (Cox et al., 2018). While
we know that changing preschool education is an effective means
of reducing violent crime, if we have already missed the opportu-
nity to improve an individual’s preschool experience, we must
develop other methods for reducing violent and aggressive behavior
during critical developmental windows. Suppose you think that, for
gun violence to end, adolescents need to be more compassionate
toward one another. Equipped with an understanding of the rele-
vant causal concepts, you know that to demonstrate that compas-
sion causes a reduction in violent behavior, you need to
manipulate compassion and see how violent behavior responds.
For example, you might design a curriculum for first-year high
school students that increases awareness of positive emotions and
strengthens empathic communication skills. To test whether this

intervention works, you need to create parallel worlds, running
with the exact same conditions at the exact same time, save for
one single difference: the presence of the compassion intervention.
Each world then hosts a range of potential outcomes, in this case,
the prevalence of violent behavior. The difference in the observed
outcomes across these worlds represents the causal effect of the
compassion intervention on violent behavior.

In social science, the simulation of parallel worlds and poten-
tial outcomes most often takes the form of a randomized con-
trolled trial (RCT; Fisher, 1925). We create parallel worlds by
assigning different, but similar, people to different conditions of
an intervention (i.e., treatment groups). We consider the response
of each treatment group as a representation of potential outcomes,
of what would have happened given the opposite condition. We
summarize the causal effect by taking the difference of the average
effect for each treatment group (ATE; Rubin, 2005). RCTs entitle
causal inference because they translate those theoretical causal
concepts – manipulation, counterfactual control, parallel worlds,
potential outcomes – into empirical action. They provide an
algebra of the counterfactual (Pearl, 2010).

How well an RCT approximates these causal concepts, how-
ever, depends on how well it meets four critical assumptions:
independence, sample homogeneity, potential exposability, and
SUTVA (stable unit treatment value assumption). Together,
these assumptions build confidence that a study truly tests
whether X has causal control over Y. Fortunately, most of these
are satisfied (at least in expectation) by a single methodological
tool: randomization. By randomizing participants to treatment
groups, we neutralize any dependency between treatment assign-
ment and outcome (independence; Holland, 1988), and we balance
(in expectation) the treatment groups on all variables other than X
(sample homogeneity; Rubin, 1974). Randomization thus forms the
basis of our parallel worlds, ensuring that the mechanism splitting
our sample into respective worlds operates in a way that maximizes
the uniformity of these worlds. Any causal effect is therefore
attributable to the control of X over Y, and not to any artifactual
differences between these worlds.

Randomization also helps confirm that all participants can be
potentially assigned to any of the treatment conditions ( potential
exposability; Jo & Muthén, 2001). This marks the first step
toward preserving the comparison of potential outcomes. If
certain participants are unable to receive one of the treatment
conditions – that is, if X cannot be manipulated for them –
then the counterfactual collapses. Holland’s (1986) proclamation
“No causation without manipulation” is emphasized for exactly
this reason (p. 959). If X cannot be changed, then the potential out-
come of what would have happened had X been different does not
exist, and no causal comparison can be drawn. Importantly, this
proclamation can be extended to cover scenarios in which X is
only hypothetically manipulatable, but where pragmatic or ethical
considerations limit its ability to be manipulated in practice
(Holland, 1986; Woodward, 2005).

If randomization sets the counterfactual conditions of a study
into motion, SUTVA guarantees that they persist as the study
unfolds. SUTVA protects the uniformity of parallel worlds and
the openness of potential outcomes by stipulating that (a) partici-
pants in each treatment group receive identical forms of the treat-
ment and (b) the outcome for each participant is not influenced
by the treatment assignment of another participant (Rubin, 1980).
Uniting these tenets is the overarching principle that, once parallel
worlds have been set to run, no new worlds are created. Consider,
for example, if instead of receiving the same compassion
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curriculum, some students received education focused on building
communication skills, while others learned mindful breathing or
expressive writing. We could no longer meaningfully compare the
potential outcomes of X and not-X because X would represent sev-
eral divergent conditions. Likewise, if participants from the treat-
ment group share their discoveries with members from the
control group, then our parallel worlds have intersected and opened
new counterfactual doors. For the difference between potential out-
comes to have causal validity, the parallel worlds initiated by ran-
domization must be preserved throughout the study. In theory,
“SUTVA is automatically satisfied under the Fisher (1935) null
hypothesis of absolutely no treatment effects of any kind” (Rubin,
1986, p. 961), though in practice, meeting SUTVA involves careful
methodological design and statistically testing the magnitude of
potential interference (Hudgens & Halloran, 2008; Sobel, 2006).

2.3. Conceptualizing causes

We began with causal concepts. Next, we translated those con-
cepts into empirical parameters and assumptions in the form of
an RCT. The final step is to export a causal conclusion. Yet draw-
ing an appropriate causal conclusion is not always straightfor-
ward. For one, there are many different kinds of causal
relationships – some are general rules, others are specific
instances; some are direct, whereas others are bridged by a cascade
of intermediary forces (Hausman, 2005; Rottman & Hastie, 2014).
Moreover, a statistical parameter, by itself, provides little insight
into the type of observed causal relationship. An ATE reveals
only that there is a mean difference between groups. When it
comes to interpreting instances of counterfactual control, how-
ever, philosophers have established a set of dimensions along
which causal relationships can be conceptualized (see
Woodward [2010] on stability, specificity, and levels of explana-
tion). Because RCTs simulate counterfactual conditions, these
dimensions can be readily exported and applied to interpreting
ATEs (see Deaton & Cartwright, 2018). In most of the social sci-
ences, ATEs are perhaps best understood by describing what they
are not: they are not uniform, not unitary, and not explanatory.

Uniform causes produce effects in the same way every time.
For example, atmospheric pressure invariably causes a barometer
to drop. At least in theory, we often presume that treatment
effects will behave uniformly (unit homogeneity; Holland,
1986). Despite this expectation, we often observe substantial het-
erogeneity in treatment effects (Angrist, 2004; Kent, Rothwell,
Ioannidis, Altman, & Hayward, 2010). This is an important indi-
cation of the type of observed causal relationship – it tells us that
the observed relationship is probabilistic rather than deterministic.
Heterogeneity indicates that the cause does not affect the out-
come in the exact same way across person, place, or time. And
indeed, this is what we find in RCTs: “there is no warrant for
the convenient assumption that the ATE estimated in a specific
RCT is an invariant parameter, nor that the kinds of interven-
tions and outcomes we measure in typical RCTs participate in
general causal relations” (Deaton & Cartwright, 2018, pp. 13–
14). This limits the ideographic and external validity of ATEs.
They do not tell us about singular causes (i.e., that X is the
cause of Y in a specific instance for a specific person), nor do
they tell us about general claims (i.e., that X will cause Y in all
places at all times) (see Cartwright [1988] for a discussion of sin-
gular vs. generic causes).

Unitary causes produce effects entirely on their own.
Atmospheric pressure, for example, is singularly capable of

dropping the reading on a barometer. Heterogeneity in treatment
effect provides another important indication here. It tells us that
the causal relationship is dependent on the presence of other fac-
tors (i.e., moderators). Adolescents with a large emotional vocab-
ulary may show a greater reduction in aggressive behavior after a
compassion intervention than those with more limited vocabular-
ies. In this case, compassion is not causally exclusive, but rather,
its effect on violent and aggressive behavior is embedded within
a system of other causes whose collective functioning brings
about the outcome. This renders ATEs local parameters that
reflect causes that are inextricably tied to the demographic com-
position and environmental context of the measured sample.

Explanatory causes provide a description of how the cause
brought about the effect. For example, atmospheric pressure causes
a barometer to drop by changing the balance of the weight of mer-
cury and the air pressure inside of the barometer. In contrast, ATEs
tell us only that changing one variable will change the other, with-
out explaining how this change comes about (Woodward, 2002).
This explanatory, or causally distal, gap divorces causes from mech-
anisms. Mechanisms can be conceptualized as complex causal sys-
tems whose interrelated parts collectively produce an effect
(Glennan, 1996). Identifying mechanisms requires (a) decompos-
ing the effect into the component processes extending from
cause to effect and (b) articulating how those processes function
together to generate an outcome (Craver & Darden, 2013). These
are different concepts than those at work in RCTs, so their empir-
ical validation requires a different set of scientific practices.

2.4. First- and second-generation causal knowledge

In 1949, John Cade reported a series of case studies finding that lith-
ium salts helped to pacify “psychotic excitement” (Cade, 1949). In
his initial report, Cade called for “controlled observation of a suffi-
cient number of treated and untreated patients” to test more conclu-
sively whether differences in lithium administration caused
differences in manic symptoms (Cade, 1949, p. 518). Seventy
years, and dozens of controlled trials later, lithium has been heralded
as a “psychiatric success story” (Draaisma, 2019, p. 584). The well-
established knowledge that lithium makes an average difference in
manic symptoms has been packaged into the first line of treatment
for bipolar disorder in clinical practice (Draaisma, 2019; Volkmann,
Bschor, & Köhler, 2020). “I don’t believe in God,” wrote Jaime Lowe,
“but I believe in Lithium” (Lowe, 2015, para. 35).

The “controlled observations” upon which the efficacy of lith-
ium was established constitute what we refer to as first-generation
causal knowledge. This is the knowledge that a variable makes a
non-uniform, non-unitary, and non-explanatory (i.e., average)
difference in an outcome. As we have demonstrated so far, this
is the type of information that is gained from standard counter-
factual comparisons under the potential outcomes model. The
promise of first-generation causal knowledge has historically
been that, despite everything it lacks, it suggests a target that
can be manipulated to change the probability of an outcome on
a large scale (Gueron & Rolston, 2013). Because we know that
lithium treatment causes an average difference in manic symp-
toms, we can prescribe lithium to bipolar patients, in the hopes
of reducing the severity of their manic symptoms, even if we
lack a clear sense of who is most likely to benefit from this treat-
ment or how this causal relationship comes about.

And yet, for all the difference that lithium has made, not
knowing exactly how or for whom this treatment works has lim-
ited its utility. Lithium is effective in fewer than one in three
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patients and, even after 70 years of research, its mechanisms of
action remain largely undefined (Alda, 2015; Harrison et al.,
2016). Lithium is far from the only intervention with a positive
ATE, high heterogeneity in its effects, and unclear mechanism
(s) of action. As a result, scientists have become increasingly
vocal about the limitations of first-generation causal knowledge
(Bailey et al., 2020). In the behavioral and social sciences, as semi-
nal findings have failed to replicate, generalize, and sustain over
time, scholars have criticized “the narrow emphasis on discover-
ing main effects and the common practice of drawing inferences
about an intervention’s likely effect at a population scale based on
findings in haphazard convenience samples that cannot support
such generalizations” (Bryan et al., 2021, p. 1). If social science
is to advance and reach more people, we need to “revolutionize”
our approach to identifying and applying causal knowledge
(Bryan et al., 2021, p. 1).

In many corners of science, this revolution has already started.
Once again, we can look to lithium treatment for guidance.
Knowing that lithium creates an average difference in manic
symptoms is useful not only because it identifies an intervention
target, but also because it identifies a causal pathway that can be
investigated to better understand the pathophysiology of bipolar
disorder and sources of heterogeneity in its treatment. For exam-
ple, recent research has found that variation in properties of neu-
ronal signaling explains differences in response to lithium
(Mertens et al., 2015). In particular, studies of lithium responders
versus non-responders found that the former show a reduction in
the hyperexcitability of hippocampal dentate gyrus neurons, sug-
gesting that this “might be the mechanism that allows [lithium] to
improve symptoms in both mania and depression phases” (Stern
et al., 2018, p. 1461). With this knowledge, these researchers have
been able to predict more accurately who will respond to lithium,
to test whether alternate treatments reduce neuronal hyperexcit-
ability in lithium non-responders, and to discover highly specific
electrophysiological processes that serve as candidates for phar-
macological intervention (Santos et al., 2021; Stern et al., 2018).

All of this followed from the first-generation knowledge that
lithium makes an average difference in symptoms of mania.
What initially appeared to be a critical flaw in the results from
an RCT – that the results are not perfectly portable across all people
– turned out to be a boon for scientific discovery. By continuing to
investigate the causal pathway, and more specifically, heterogeneity
in the causal pathway, we have been able to migrate our relatively
shallow understanding of this causal effect to a position of greater
causal depth. These types of investigations represent a progression
toward what we refer to as second-generation causal knowledge.
This is knowledge that provides a “clear sense of the mechanisms
of change through which effects (intended and unintended)
occur, which specific [causal] components and combinations are
likely to be most (and least) effective, and in what contexts and
with whom such effects will potentially be replicable” (Bonell,
Fletcher, Morton, Lorenc, & Moore, 2012, p. 10). The promise of
second-generation causal knowledge is that, by identifying pro-
cesses and contexts through which the effect emerges, we will be
able to increase uniformity, improve understanding, and isolate
steps in the causal path that serve as candidates for intervention.

2.5. Summary

In this section, we discussed one of the primary tools that social
scientists use to test causation: RCTs. The counterfactual was
introduced as the primary causal concept that gives RCTs causal

power, with particular emphasis placed on counterfactual situa-
tions that involve manipulation and control. The construction of
parallel worlds and the comparison of potential outcomes across
these worlds was discussed as the foundation of the ATE.
Guidelines for interpreting ATEs in the context of RCTs were
advanced by detailing what these causal relationships are not:
they are not the same across all people (uniform), they are not
isolable causes (unitary), and they are not explanations for how
a cause changes an effect (explanatory). Using the example of
lithium administration, we highlighted how the understanding
that a cause creates an average difference in an outcome (first-
generation causal knowledge) is traditionally used to identify
and implement large-scale intervention targets. We reviewed the
limitations of this application and highlighted how second-
generation approaches can improve our understanding of the
mechanisms of action generating an effect and sources of hetero-
geneity in treatment outcomes. In the next section, we carry
forward this experimental and interpretational framework to
scaffold our definition of what it means for genes to be causes.

3. Causal inference in genetic research designs

3.1. Overview of behavior genetics

Tracing the causes of human behavior has been of scholarly interest
because long before social scientists were using RCTs to manipulate
measured variables. In every epoch of documented history, heredity
has been considered one such source of human action and decision
making (see Loehlin [2009] for a complete history of behavior
genetics). It was only relatively recently, however, that two major
breakthroughs transformed this longstanding endeavor from spec-
ulation to quantification. The first came in 1869, when Francis
Galton redefined the study of heredity as the study of measurable
similarities between relatives (Galton, 1869; Kevles, 1995). Then
in 2001, researchers successfully sequenced the human genome,
making it possible to observe the composition of human DNA
(Venter et al., 2001). These empirical milestones have provided crit-
ical scientific insight into the etiology of complex human outcomes,
and it turns out that the pre-empirical scholars were right: genes do
cause human behavior. Arriving at this conclusion, however,
requires more than simply obtaining estimates of genetic associa-
tions. Once again, “no causes in, no causes out.”

These methodological advances have formed the foundation of
the two principal methodologies used in behavior genetics: twin
studies and genome-wide association studies (GWASs). In twin
studies, pairs of monozygotic twins, sharing 100% of their segregat-
ing genetic variance,3 are contrasted with pairs of dizygotic twins,
who share only 50%. The total variance of a measured trait can
then be decomposed into three latent sources: additive genetic var-
iance (a2), shared environmental variance (c2), and nonshared envi-
ronmental variance (e2) (Plomin, DeFries, Knopik, & Neiderhiser,
2013). Of primary interest to behavior geneticists is the proportion
of phenotypic variance attributable to additive genetic variance,
also known as a trait’s heritability (h2). Similar to an R2 effect
size, heritability is useful in that it quantifies the extent to which
phenotypic differences are statistically accounted for by genetic dif-
ferences (writ large), but it fails to specify which genes or, crucially,
how those genes are responsible for producing phenotypic differ-
ences. Without such mechanistic knowledge, it can be difficult or
impossible to predict whether genetic influences will be portable
across environmental contexts (Mostafavi et al., 2020; Uchiyama,
Spicer, & Muthukrishna, 2021).
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The breakthrough in genetic sequencing modernized the esti-
mation of genetic associations from a single unobserved variable
to millions of observed variables. In GWASs, individual genetic
sites (known as single-nucleotide polymorphisms [SNPs]) are
entered as independent variables in a linear regression predicting
a measured phenotype. This hypothesis-free approach tests asso-
ciations with millions of SNPs in order to glean insight about
which specific portions of the genome are associated with the
occurrence or degree of a trait (Corvin, Craddock, & Sullivan,
2010; see Box 1 for a technical primer on GWASs).

The estimates from these linear regressions, called SNP effect
sizes, represent either the probability that cases differ from con-
trols at a particular genetic site or represent the magnitude of
the association between a particular genetic site and a continuous
outcome. The entire set of SNP effects (collectively referred to as
summary statistics) is in turn used for a wide array of applications.
A popular application in the social sciences is using GWAS sum-
mary statistics to create a polygenic score, which aggregates infor-
mation from all SNPs into a single index of each individual’s
genetic propensity for a trait (Sugrue & Desikan, 2019).

Exactly what h2 estimates and SNP associations tell us about
the relationship between genes and behavior has been the source
of much discourse and much disagreement (see Fig. 1). At one
end of the spectrum are those that claim – quite extraordinarily
– that these coefficients prove that traits such as intelligence are
genetically determined and that differences in ability between
racial and ethnic groups must be the result of hardwired genetic
differences (Herrnstein & Murray, 1996; Jensen, 1969; Murray,
2020). At the other end are those that claim that, not only do
these coefficients fail to represent genetic determinism or innate
group differences, they fail to represent anything meaningful
about how genes influence behavior (Block, 1995; Lewontin,
1974/2006).

Both extremist views are mistaken. Heritability estimates and
SNP associations are neither supra-causal nor inherently mean-
ingless. They are simply point estimates from statistical models.
In the same way that a statistical association between cannabis
use and psychotic symptoms would not imply that cannabis use
is the ultimate or fixed source of psychosis, nor that a population
with a high incidence of psychosis must therefore be using more
cannabis, h2 estimates and SNP effects imply neither determinis-
tic associations nor between-group differences. What can be
implied, however, is that using cannabis potentially increases
risk for developing psychotic symptoms. This is a causal hypoth-
esis that must be evaluated using study designs, such as RCTs,
that appropriately instantiate causal concepts. Likewise, most
behavior geneticists believe that twin studies and GWASs have
utility in identifying genetic factors that potentially predispose
for phenotypic differences between people (Visscher, Hill, &
Wray, 2008).

But if the conclusion that we aim to defend is that genes cause
behavioral and psychological outcomes, then clearly, we need
something more than genetic associations alone. For genes to
be considered causes, h2 estimates and SNP effects need to be bol-
stered by the same causal concepts that privilege some t-statistics
as ATEs. We need to know what the trait would have looked like if
the genotype had been different. Unlike in RCTs, however, we
cannot manipulate the treatment to simulate the counterfactual.
We cannot randomly assign people to receive a certain genotype –
at least not in any agreeable, ethical, or disseminable way.
Fortunately, there is no need. The counterfactual has already been
simulated for us.

3.2. Natural experiment of genetic inheritance

Consider this portentous lesson from history. In the fall of 1918,
an influenza pandemic hit the United States without warning. By
January of 1919, the virus had mostly disappeared. This meant
that babies born just a few months apart experienced vastly differ-
ent prenatal conditions. In effect, the virus had manipulated the
prenatal environment, randomizing adjacent birth cohorts into
those exposed to pandemic conditions – including either the flu
itself or related stressors – and those experiencing relatively nor-
mal, or control, conditions. These cohorts represented parallel
worlds that could be compared at different developmental stages
to examine the causal effect of prenatal conditions on economic
outcomes. Leveraging this natural randomization to simulate con-
ventional RCT methodology, researchers concluded that in utero
exposure to pandemic conditions caused lower educational attain-
ment, lower income, and lower socioeconomic status in adulthood
(Almond, 2006). The real-world generation of these counterfac-
tual conditions typifies a natural experiment, in which treatment
and control groups are meted out on the basis of a naturally
occurring randomization mechanism.

In the case of genes, counterfactual conditions are created
through meiosis, an instance of naturally occurring biological
randomization. Meiosis is a process of cell division and DNA
recombination that results in the production of unique sex
cells (i.e., gametes). This process is essentially a natural manip-
ulation of parental DNA. During recombination, segments of
DNA from identical (i.e., homologous) chromosomes cross
over in novel patterns to create new chromosomes to be inher-
ited by offspring. Recombination is a primary source of inter-
generational genetic variation (Nachman, 2002; Spencer et al.,
2006), and the amount of variation created is vast. Within a sin-
gle person, recombination results in the production of over 8
million unique chromosomal combinations (Batmanian, Ridge,
& Worrall, 2011). When combined with a partner’s gametes,
there are over 70 trillion genotypes that an offspring could
become (Carroll, 2020).

Box 1. Primer on GWAS

Single-nucleotide polymorphisms (SNPs) are the sites of DNA that commonly vary in the population (>1%). Each SNP is composed of a pair of allelic variants, or
two of four possible genetic “letters” (adenine, thymine, cytosine, and guanine). SNP genotyping identifies each genotyped individual’s pair of allelic variants at
each polymorphic site (Perkel, 2008). Because of the correlation structure among SNPs (known as linkage disequilibrium), it is possible to impute values for
hundreds of SNPs not measured during the genotyping process, allowing for the analysis of millions of genetic variants in relation to an outcome. Prior to
conducting GWAS, the raw allelic structure of each SNP is converted to an ordinal variable reflecting the number of minor alleles (i.e., the less commonly
occurring allele in the population) that an individual possesses. The number of minor alleles at each SNP is what is then associated with the outcome to obtain
an SNP effect size. SNP effect sizes are used for a growing number of applications, including annotating the biological function of identified SNPs (Watanabe,
Taskesen, van Bochoven, & Posthuma, 2017), constructing polygenic scores (Sugrue & Desikan, 2019), modeling genetic associations with other traits (Grotzinger
et al., 2019), and estimating SNP-based heritability (Yang, Zeng, Goddard, Wray, & Visscher, 2017).
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Manipulation is not synonymous with randomization, how-
ever. If the variation produced by meiosis creates different treat-
ment conditions, it must also be the case that the inheritance,
or assignment, of these conditions is random. Two principles
established by nineteenth century geneticist Gregor Mendel reas-
sure us of the validity of randomization: (1) the Law of
Segregation states that at every point in the genome, offspring ran-
domly inherit one allele from each parent and (2) the Law of
Independent Assortment states that alleles will segregate to gam-
etes independently of one another (Davies et al., 2019).
The astute reader will note that all alleles are not inherited entirely
independently from each other because of linkage (National
Human Genome Research Institute, 2022), the tendency for
DNA segments that are positioned close together on a chromo-
some to be inherited together. We return to defining linkage
and considering its implications for causal inference below.

Thus, at each genetic site, you inherit two alleles (one from
your mother and one from your father) but which alleles you
inherit of the possible parental alleles is a completely random
event. Even though linkage makes it so that we inherit groups
of alleles together (i.e., haplotype blocks) (Phillips et al., 2003),
Mendel’s principles are just as aptly applied to haplotype blocks
as to SNPs – haplotype blocks are, at least in part, randomly cre-
ated (Wang, Akey, Zhang, Chakraborty, & Jin, 2002), and inher-
ited independently of one another (Browning & Browning, 2011).
Crucially, this randomness gives genetic inheritance its experi-
mental infrastructure (Davey Smith & Ebrahim, 2003): just as
we can compare outcomes between treatment and control groups
in the context of an RCT in order to gain insight about the aver-
age causal effect of the treatment, we can compare outcomes
between family members who inherited different genes in order
to gain insight about the causal effect of genotype. Confidence
in these counterfactual conditions, however, depends on how
well they meet those four critical assumptions of all randomized
experiments – independence, sample homogeneity, potential expos-
ability, and SUTVA. We consider each one in turn.

3.2.1. Independence
At face value, Mendel’s laws satisfy the independence assumption.
If genetic variants are randomly and independently assigned, then
we should expect no systematic dependency between genotype
and outcome (Holland, 1988). In actuality, there exist several pos-
sible violations of independence.

First, because of evolutionary factors and non-random mat-
ing patterns, different subpopulations, such as those with differ-
ent ancestral backgrounds, have different frequencies of certain
alleles, known as population stratification (Cardon & Palmer,
2003). Discrepancies in allele frequency across different groups
of people are often systematically associated with environmental
differences (environmental confounding), non-ancestral-related
genetic differences (genetic confounding), and mate selection
(assortative-mating confounding) (Young, Benonisdottir,
Przeworski, & Kong, 2019). This means that if we estimate a
genetic association in a sample of people who are not close bio-
logical relatives, we cannot separate the causal effect of the gene
from any of these confounding sources. Conventional GWASs
do their best to mitigate these problems. For instance, they
are conducted in ancestrally homogeneous samples (Mills &
Rahal, 2019), and even within these samples, population strati-
fication is often corrected for by controlling for ancestry-based
principal components (Price et al., 2006) or using linear mixed
models (Yang, Zaitlen, Goddard, Visscher, & Price, 2014). But,

none of these practices guarantees independence (Haworth
et al., 2019).

The only way to surmount this problem is to examine genetic
associations relative to parental genotypes, for example, by
directly comparing an offspring to both of its parents or by com-
paring siblings from the same family (Brumpton et al., 2020;
Young et al., 2018). For any individual, “each of the meiosis
and conception events that determined [a person’s] DNA is an
independent event conditional on the parental genotypes”
(Davies et al., 2019, p. R174, emphasis added). Here are
Mendel’s laws in action: the genotype of any individual is a ran-
dom and independent selection of genes from their parents.
Because siblings inherit their genes from the same pool of poten-
tial genotypes, the pitfalls of population structure can be avoided
if the comparison of siblings is appropriately conditioned on their
parental genotypes (Fletcher, Wu, Li, & Lu, 2021; Zaidi &
Mathieson, 2020). Novel designs such as within-sibship GWASs
and relatedness disequilibrium regression (RDR) exploit the ran-
domization in meiosis that renders treatment assignment and out-
come independently (Howe et al., 2021; Young et al., 2018).

Second, alleles are not inherited completely independently
from each other. Rather, DNA segments that are positioned
closely together on a chromosome are more likely to be inherited
together, as there is a lower probability of a recombination event
occurring between them. As a loose analogy, if you shuffle a deck
of cards and then split the deck, two cards that are right next to
each other in the deck before shuffling are more likely to end up
in the same half of the deck than cards that are far apart from
each other. This co-inheritance results in linkage disequilibrium
(LD), that is, a correlation between alleles.

The issue of LD raises a more general issue, which we refer to as
the resolution of genetic effects. The highest resolution for genetic
causes is to identify an individual genetic variant. When geneticists
talk about identifying a “causal variant,” they are using a high res-
olution for genetic effects: a C1 allele in the cystic fibrosis transmem-
brane regulatory (CFTR) gene, for example, causes cystic fibrosis.
The lowest resolution for genetic causes is the entire genome. A
method such as RDR can conclude that, if people had inherited
different genetic segments from their parents, their phenotypes
would be different. This is a causal conclusion but one that is
silent regarding which genetic variants are causally relevant.

An intermediate resolution for conceptualizing genetic causes,
and the resolution most relevant for understanding the results of
GWASs, is neither the individual variant nor the entire genome,
but instead a set of alleles that are all in high LD with each
other (but not in LD with other alleles). A within-sibling
GWAS leverages the natural experiment of meiosis, but it does
not measure every possible genetic variant. Thus, a “hit” in a
within-sibling GWAS, that is, an SNP that is associated with
within-sibling differences in phenotypes, might be the causal var-
iant, or it might be in LD with the causal variant. That is, the SNP
is best considered a measure of an underlying genetic cause, while
the specific causal variant often remains unknown.

In order to build an intuition about how an SNP can be a mea-
sure of a cause, rather than the cause itself, it might be helpful to
consider other types of natural experiments. Consider, for exam-
ple, the Dutch Hunger Winter studies. In 1944, the Nazis retali-
ated against Dutch resistance to occupation by imposing an
embargo on transport to western Holland, causing a severe famine
in large cities. By November, food rations were 450 calories per
day, and the famine continued until Holland was liberated by
the Allied armies in May 1945.
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The Dutch famine has become a famous quasi-experiment for
studying the effects of prenatal exposure to caloric restriction of
adult health and cognition. Because the famine affected cities in
a geographically circumscribed area in west Holland, for a circum-
scribed period of time, exposure to famine can be treated as if ran-
dom, by comparing individuals conceived during the famine to
individuals in the same cities who were conceived before or
after the famine, and to individuals conceived at similar times
in unaffected cities.

In their landmark 1972 study on the effects of prenatal famine
exposure on cognition, males who appeared for military induction
at age 18 were asked for their date and place of birth, which
researchers used to assign them to “exposed” or “unexposed”
groups (Stein, Susser, Saenger, & Marolla, 1972). That is, we
can differentiate between the study’s cause of interest (prenatal
exposure to famine) and the study’s measurement of that cause
(participant’s self-report of date and place of birth). Obviously,
a participant writing down his date of birth is not the cause of
his adult health. Rather, his self-report is an indicator used to
infer his membership in a group that is as-if randomly exposed
to the putative cause. Such a situation, where researchers are rely-
ing on potentially imperfect measures of putative causes, is com-
mon in natural experiments where researchers are not assigning
participants to treatment and control groups, but are rather ascer-
taining exposures after the fact. Similar to the Dutch Hunger
Winter researcher who has not randomly assigned their partici-
pants to be exposed to famine or not, a GWAS researcher has
not assigned people to genotypes. Nature has randomly assigned
offspring to genotypes from their parents, and the GWAS
researcher is left trying to ascertain to which genotypes people
have been assigned. An SNP array is an imperfect measure of
that random assignment.

Putting these lines of reasoning together, the natural experi-
ment of meiosis guarantees that segments of the parental genome
are independently and randomly assigned to offspring, but there
remains non-independence of specific alleles that are co-inherited
and in LD. A within-family GWAS, then, will be able to success-
fully identify that “genes” have a causal effect on phenotypes, but
“genes” are studied at an intermediate level of resolution, encom-
passing all alleles in LD with the measured SNP. Researchers can
then use “fine mapping” techniques to gain higher resolution
(LaPierre et al., 2021).

3.2.2. Sample homogeneity
Comparing members of the same family should allow randomiza-
tion to serve another one of its chief functions: preserving sample
homogeneity (Rubin, 1974). Randomization “guarantees, by con-
struction,…that the [difference in means for all other causes] is
zero in expectation” (Deaton & Cartwright, 2018, p. 4). In prac-
tice, sample homogeneity is a function of two factors: (1) the
number of participants and (2) the number of trials (Deaton &
Cartwright, 2018). GWASs are uniquely suited to address these
factors. First, standard GWAS sample sizes tend to tally in the
millions (e.g., Evangelou et al., 2018; Karlsson Linnér et al.,
2019; Nielsen et al., 2018), orders of magnitude larger than typical
RCTs. Although improving the sample sizes of within-family
designs remains a critical aim of behavior genetics, recent studies
have begun to analyze SNP effects in upward of 40,000 sibling
pairs (Karlsson Linnér et al., 2021). Second, meiosis is essentially
a series of millions of randomized trials. As the assortment of
alleles at each genetic site is a random event, we should have
increasing confidence that allele carriers do not differ in

systematic ways as we aggregate over the genome. This makes
summary indices of genetic effects, such as polygenic scores, par-
ticularly powerful tools.

3.2.3. Potential exposability
Potential exposability is directly related to manipulability. If the
treatment is something that can be manipulated, or changed,
then randomization ensures that every participant is potentially
exposable to any condition (Jo & Muthén, 2001). In one sense,
the conditions of meiosis easily satisfy the requirement of poten-
tial exposability. Meiosis manipulates parental DNA, creating tril-
lions of unique genotypes for an offspring to inherit (Carroll,
2001). The fact that meiosis satisfies genotype-level exposability
suggests that, as with sample homogeneity, indices that aggregate
across the genome may be particularly suited for causal inference.

3.2.4. SUTVA
Consider a family with two adolescent children, Linda and
Maggie. Through meiosis, Linda and Maggie were randomly
assigned their genotypes, creating parallel worlds that could be
compared to examine whether their genes caused different life
outcomes. In particular, Linda inherits variants in the ADH1B
gene that affect her metabolism of alcohol, contributing to her
refraining from alcohol use (Bierut, 2011). Linda’s substance-use
choices become part of the environment that she shares with
Maggie, a factor that often serves to align substance-use habits
among siblings (see Samek, McGue, Keyes, & Iacono [2015] for
a review of shared environmental factors in substance use). If
observing Linda decline alcohol, return home promptly before
curfew, and engage in substance-free recreational activities influ-
ences Maggie’s alcohol-related behavior, then SUTVA has been
violated. Linda’s treatment assignment – her genotype – has inter-
fered with Maggie’s potential outcome, obfuscating a causal com-
parison of counterfactual conditions (Rubin, 1980). For SUTVA
to be preserved in the natural experiment of genetic inheritance,
there can be no indirect sibling-to-sibling genetic effects (Eaves,
1976).

The surest way to safeguard against the behavioral transmis-
sion of genetic effects between siblings is to analyze data from a
single offspring controlling for both of the parental genotypes.
Alternatively, one could compare the potential outcomes of sib-
lings who were not raised together (e.g., adoption studies;
Plomin, DeFries, & Loehlin, 1977). This assures that each sibling’s
genotype has as little influence on the other sibling’s phenotype as
possible. To be sure, even adoption studies cannot protect against
other sources of indirect genetic effects (see Scarr & McCartney
[1983] for a review), but these are more a problem of sample
homogeneity than SUTVA. As an analogy, consider an RCT on
a pharmacological treatment of depression. If some participants
happen to read existential philosophy during their treatment,
the threat is that a potential imbalance of philosophy readers
across treatment groups will confound depression scores.
Reading existential philosophy, however, has nothing to do with
whether the depression treatment that one participant receives
interacts with another participant’s depressive symptoms.
Non-sibling indirect genetic effects are like reading existential
philosophy – they are sure to affect an offspring’s outcome,4

and they might create a systematic difference in (genetically influ-
enced) environments across allele carriers, but they do not violate
SUTVA.

Evidence has begun to suggest, however, that when siblings are
raised together, their respective genotypes do in fact influence
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their siblings’ phenotypes (Fletcher, Wu, Zhao, & Lu, 2020). The
presence of sibling interference need not undo causal inference
entirely (Rosenbaum, 2007). In these cases, addressing SUTVA
involves determining (a) the direction of the interference and
(b) the magnitude of the effect. Developmental psychologists dif-
ferentiate between imitation and contrast effects – those patterns
of “behavioral acquisition via social learning” that serve to either
fuse or drive apart sibling behavior (Carey, 1986, p. 320; see
Dolan, de Kort, van Beijsterveldt, Bartels, & Boomsma [2014];
Moscati, Verhulst, McKee, Silberg, & Eaves [2018] for empirical
demonstrations). Whether or not Linda refraining from alcohol
use causes Maggie to similarly abstain or rebel into greater use
depends on factors such as their relative ages (Abramovitch,
Corter, & Lando, 1979) and the stage of their dyadic relationship
(Carey, 1986).

Empirically examining SUTVA involves quantifying the mag-
nitude of imitation or contrast effects by segregating the direct
causal effect from interference effects. This can be achieved
through a process of triangulation (Lawlor, Tilling, & Davey
Smith, 2017), a leveraging of multiple data sources and unique
methodological approaches to increase confidence in a causal
conclusion. In the case of sibling interference, Kong et al.
(2018) provide a paradigmatic example: using genotype data
from both siblings and parents and integrating within-sibship
comparison with a traditional trio design (see Connolly &
Heron [2015] for a review), the researchers were able to triangu-
late on a direct causal estimate of genotype on outcome. By
including the effect of the sibling’s genotype and the uninherited
portions of the parental genotypes in the model, Kong et al.
(2018) estimated the magnitude of the interference and effectively
ensured that it, and other confounding sources, were controlled
for. Adoption studies may ensure protection against SUTVA vio-
lations, but innovative methodological approaches can still rescue
causal inference in the face of sibling interference.

3.3. Shallow end of genetic causation

Perhaps no outcome has been more magnetic in contemporary
behavior genetics than educational attainment (EA; Martin,
2018). The most recent GWAS of EA, published in 2018, has
already been cited over 900 times (Lee et al., 2018). It has also
generated a litany of passionate critiques and rebuttals (see, e.g.,
the blog post titled “Why We Shouldn’t Embrace the Genetics
of Education”; Warner, 2018). Yet prior to 2013, EA was consid-
ered a fairly rudimentary, albeit important, covariate in GWASs
(Plomin & von Stumm, 2018). Priority had been given to medical
and psychiatric disease states; EA was simply a confound to rule
out. As GWAS methodology began to permeate the social sci-
ences, however, the troves of data on EA that had been accrued
over the years by large-scale research consortia became invaluable.
Suddenly, EA had become the most GWAS-able trait.

The first GWAS of EA detected three SNPs with significant
effects in 126,559 individuals, collectively explaining 2% of its var-
iance (Rietveld et al., 2013). Three years later, 74 SNPs were
detected in twice as many people, explaining 4% of the variance
(Okbay et al., 2016). By 2018, the GWAS of EA included 1.1 mil-
lion individuals, over 1,000 significant SNP effects, and explained
over 10% of the variance (Lee et al., 2018). By social science stan-
dards, that is a large and stable effect size (Funder & Ozer, 2019),
and one that even outperforms many complex, multivariate
approaches to predicting educational outcomes (Salganik et al.,
2020). The incremental successes of the EA GWASs are

undeniably impressive, but they have not been accompanied by
incremental increases in causal inference. Even if the fourth iter-
ation of the EA GWAS detected 5,000 significant SNP effects and
explained 50% of the variance in EA, it alone would not move us
closer to the conclusion that genes cause educational outcomes.

To be sure, we are currently in a position to conclude that
genes cause EA. But this conclusion is only possible because
researchers have applied summary statistics from EA GWASs to
datasets that allow for counterfactual comparison. By using
“within-family genetic design[s],” differences in associations
between polygenic scores and educational outcomes allow for
“causal inference and explanation” (Selzam et al., 2019, p. 360).
So when we find that “children with higher polygenic scores…
move up the social ladder in terms of education, occupation,
and wealth, even compared with siblings in their own family”
(Belsky et al., 2018, p. E7281), the appropriate conclusion is
that genes caused these differences in attainment.

For behavior geneticists, this is undoubtedly a triumph. After
years of null results and unreplicable false positives, the field
can now construct measures of DNA differences that caused
important life outcomes. For others, however, this statement
rouses ambivalence at best, and outrage at worst. There is a
vocal contingent of bloggers, journalists, and scientists who fear
that GWAS of social outcomes and its associated applications
“will only be fuel for those who think that social inequalities
are natural and unchangeable” (Samorodnitsky, 2020, para. 20).
Such a picture of genetic causes is unwarranted, however, when
we remember what it means for something to be a cause: genetic
causes for human behavioral traits are non-uniform, non-unitary,
and non-explanatory.

It can be easy to neglect that genetic causes behave just like
ATEs from RCTs. Prominent examples from medicine have
shaped expectations that genes are of a different class of causes
(Ross, 2019). Take cystic fibrosis (CF), for example. CF is an auto-
somal recessive disorder present in about 70,000 individuals glob-
ally. It is caused by two mutated copies of the CFTR gene on the
seventh chromosome (Cutting, 2015). Unlike most ATEs, this
genetic cause is (a) uniform – it consistently produces the occur-
rence of CF across individuals, (b) unitary – it alone causes the
occurrence of CF, and (c) explanatory – it provides an explanation
for how CF occurs5 (Elborn, 2016). Together, these characteristics
make CF an instance of deep genetic causation6 (see Turkheimer
[1998] on strong biologisim; Meehl [1972] on specific genetic etiol-
ogy). Scientists gravitate toward deep causes. They are salient, sim-
plistic, and they provide a coherent framework for the operation
of a complex system such as the genome (Engel, 1977; Kendler,
2005). Despite the conceptual attraction to deep causes, almost
everything we have learned from GWASs points to genes as shal-
low causes – many variants from across the genome relate to
behavioral outcomes, but when they matter and how they matter
differs across people, place, and time (Ross, 2019). The appropri-
ate paradigm for genetic causes of human behavior is therefore
not the deeply deterministic example of CF, but the local, proba-
bilistic, and distal characteristics of ATEs.

Support for the idea that genes are non-unitary causes of
behavior is so robust that it has been consecrated as one of the
modern laws of behavior genetics (Chabris, Lee, Cesarini,
Benjamin, & Laibson, 2015). Indeed, arguably the greatest take-
away from the GWAS era has been that individual genetic variants
do not produce behavioral effects on their own. This is not a triv-
ial statement – decades of research were spent hunting for single
polymorphisms (i.e., candidate genes) that would prove to have

Madole and Harden: Building causal knowledge in behavior genetics 11

https://doi.org/10.1017/S0140525X22000681 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X22000681


causal control in the etiology of behavioral and psychological out-
comes (see Munafò [2006] for an overview). Consistent failure of
these findings to replicate, however, pushed behavior geneticists to
develop more sophisticated models. Most believe now that the
genetic architecture of complex traits is polygenic (involving
thousands of variants with small effects distributed throughout
the genome [Duncan, Ostacher, & Ballon, 2019]) or even omni-
genic (involving sundry genome-wide variants that affect behavior
by disrupting interconnected gene regulatory networks [Boyle, Li,
& Pritchard, 2017]). But if single genes are not unitary causes of
behavior, neither is the genome writ large. Even a model that con-
sidered every gene in the genome and its higher-order function
would fail to be causally exclusive because it would fail to account
for larger etiological systems such as “history and cohort, the life
course, and social structures like gender” through which “genetic
influence must be understood” (Herd et al., 2019, p. 1070).
Genes might cause EA, but they are certainly not the only cause
of EA.

The nesting of genetic effects within biological, psychological,
and social systems is what makes them local parameters. The size
and shape of a particular effect will always depend on the size and
shape of the other causal factors present in that instance. In the-
ory, this suggests that genetic effects will be non-uniform. If con-
text matters, then genetic effects should change across settings.
Nevertheless, there persists “the common assumption…that
genetic effects are ‘universal’ across environments” (Tropf et al.,
2017, p. 758). This would imply that genetic effects are determin-
istic, that they will produce the same effect in the same way every
time, independent of the context. Two takeaways from modern
genomics suggest that this assumption is unfounded: (1) genetic
effects are heterogeneous across environments and (2) genetic
effects show poor generalizability.

That genetic effects vary across environments is a proposition
of longstanding tenacity (gene × environment [G × E] interactions)
(see Jaffee & Price [2007] for a review; Feldman & Lewontin,
1975; Turkheimer & Gottesman, 1996). Reliably identifying
such interactions, however, has historically proved difficult
(Munafò & Flint, 2009). This is where the substantial increases
in the predictive power of GWASs, similar to those seen in EA,
have considerable value. Several studies have been able to provide
insight into the environments that facilitate the emergence of
genetic effects on EA. Genetic effects appear to increase in size
when structural barriers such as gender (Herd et al., 2019),
class (Rimfeld et al., 2018), and intergenerational mobility
(Engzell & Tropf, 2019) are removed. Said differently, the proba-
bility that genes matter for EA varies depending on the environ-
mental exposures of the individual. Similar heterogeneity has
been observed in genetic effects on reproductive, physical, and
psychiatric outcomes (Coleman et al., 2020; Tropf et al., 2017).

The disparity in genetic effects across environments is further
corroborated by the fact that GWAS findings have largely failed to
be applicable outside of discovery samples. That means that the
genes that predict an outcome in one sample fare poorly in pre-
dicting the same outcome in a separate sample. Not only is this
the case when testing predictive accuracy in diverse populations
(Martin et al., 2017), but inconsistent accuracy has also been
found when looking within demographic subgroups (i.e., age,
gender, socioeconomic status) of the same ancestry (Mostafavi
et al., 2020). Moreover, this failure for genetic effects to port
was found even when phenotypes were measured consistently
across samples. Variation in the measurement or applicability of
a phenotype across populations, for example when “educational

attainment emphasizes rote memorization or formal writing…
[rather than] experiential learning,” is likely to be another source
of restricted generalizability (Meyer, Turley, & Benjamin, 2020,
para. 5). Collectively, this suggests that while genes cause EA,
this is neither a singular nor a generic claim (Cartwright, 1988).
We know neither that genes are the cause of EA for a specific
individual nor that genes are the cause of EA for all people across
place and time.

Genes, however, do have generic functions (Dawkins, 1982/
2016). Every gene produces biochemical material for cellular
encoding, and the specific set of instructions governed by a par-
ticular gene is consistent across person, place, and time
(Schaefer & Thompson, 2014). This would indicate that the first
step in the causal pathway from genes to behavior is uniform.
To ultimately arrive at non-uniform effects on behavior, there
must therefore be subsequent points along this causal pathway
where people diverge. Indeed, we know already that this diver-
gence begins almost immediately after gene function. Even pro-
cesses such as gene expression and gene regulation show
substantial heterogeneity across environments (Bork et al.,
1998), and this tends to be more the rule than the exception as
the pathway winds through biological (Gough et al., 2017), psy-
chological (Molenaar, 2004), and sociological systems (Scott,
1988). Each point of heterogeneity demarcates a garden of forking
paths (Borges, 1941/2018; Gelman & Loken, 2014), a splintering
of a uniform stream of processes into separable causal pathways.
The staggering amount of heterogeneity that exists in the pro-
cesses that extend from genes to behavior tells us that there are
a potentially untraceable number of causal pathways. Identifying
a genetic cause provides no insight into which causal pathway
ultimately produced the behavior because genetic causes are not
mechanisms. Genes might cause EA in the sense that genes
made some distal difference in the level of attainment, but not
in the sense that they provide an explanation for how this differ-
ence was made.

This distinction between causes and mechanisms often gets lost
when applied to the relationship between biology and behavior
(Thomas & Sharp, 2019). As Gregory Miller writes, “[r]elevant sci-
ence abounds with demonstrations that…imply causal relationships
between psychology and biology…yet we often write as if we know
the mechanisms” (Miller, 2010, p. 717). Despite the implicit
assumption that biology reveals something inherently mechanistic,
there is nothing that necessitates that biological causes need to be
mechanistic nor that mechanisms need to be biological. In plainest
terms, mechanisms explain an effect. Even putatively biological asso-
ciations, such as genetic effects on lung cancer, might be largely
explained via social processes, such as access to cigarettes (Kendler
et al., 2012). Further, whether a biological cause actually provides
explanatory insight is a matter of circumstance. Consider the exam-
ple from Turkheimer (1998) on the origins of vocal muteness for
two individuals, one who has suffered a stroke in Broca’s area of
the brain and the other who has taken a religious vow of silence:

It seems natural to describe the stroke patient’s muteness as biological and
the monk’s as psychological. What do these attributions mean? It is not
simply that the aphasia is ‘in’ the brain, because the monk’s decision pre-
sumably resides there also. Instead, the difference involves the nature of
the structural relationship between a neurological representation of the
condition and a psychological account of it (p. 783).

In other words, the key difference is that only the aphasia patient’s
identified biological cause is mechanistic: it describes how a
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localized lesion compromises the neural areas that support lin-
guistic functioning – an outcome that would also happen to be
invariant across time and place. Likewise, biology factors into
the monk’s muteness (see, e.g., research on the neural networks
supporting religiosity; Kapogiannis et al., 2009). While this biol-
ogy may prove useful in forecasting future spiritually-based mute-
ness in other individuals using predictive modeling (Shmueli,
2010; Yarkoni & Westfall, 2017), it would be insufficient to
explain this monk’s vow of silence. The mechanism behind the
monk’s silence is psychological – it is his decision that generates
and explains his outcome.

3.4. Using genetic causes to advance second-generation causal
knowledge

In this paper, we have argued for the idea that certain types of
genetic effects (i.e., contingent on parental genotypes) constitute
first-generation causal knowledge. Similar to ATEs, genes are
causal in the sense that “differences in [genotype]…cause pheno-
typic differences in particular genetic and environmental con-
texts” (Waters, 2007, p. 558). Unlike with many ATEs, however,
this information cannot be used to manipulate the causal variable
on a population scale. This would seem to limit the applied value
of identifying and conceptualizing genes – or any other immuta-
ble cause – as average difference-makers. But, as the case of lith-
ium treatment showed us, there is no reason to restrict
first-generation causal knowledge to this singular application.
Similar to all first-generation causes, genetic effects contingent
on parental genotypes represent causal pathways that can be
explored to advance second-generation aims.

If we accept the conclusion that genetic variants make an
average difference in psychological and behavioral outcomes,
then we can begin to embrace the trove of potential scientific
discoveries lying along this causally distal pathway. To start,
we can improve phenotypic understanding by exploring mediat-
ing processes. Traditionally, researchers have used GWAS
results to gain deeper insights into the biology of complex
behavioral outcomes (Dick et al., 2018). Approaches such as
bioinformatics annotation make it possible to locate specific
cells, tissues, and organs where relevant genetic variants are
expressed (Watanabe, Mirkov, de Leeuw, van den Heuvel, &
Posthuma, 2019). In pathway analysis, genetic variants are clus-
tered by functional relatedness and used to assess whether can-
didate biological functions are implicated in disease etiology
(White et al., 2019). Collectively, these techniques serve to
“increase explanatory power” by specifying the “parameters of
the nervous system [that] are aberrant as a result close in the
causal chain to the gene or genes” (Khatri, Sirota, & Butte,
2012, p. 1; Meehl, 1972, p. 11).

Inspired by this method of biological discovery, researchers
have called for an approach that maps genotypes to multifarious
aspects of the social environment ( phenotypic annotation; Belsky
& Harden, 2019). By associating polygenic scores for one pheno-
type with related phenotypes at different stages across the lifespan,
we can detail potential behavioral and developmental pathways
through which target phenotypes emerge. Already this work has
provided considerable insight into how genetic risk for adult out-
comes such as body mass index, smoking, educational attainment,
and attention-deficit/hyperactivity disorder manifests in child-
hood and adolescence (Agnew-Blais et al., 2021; Belsky et al.,
2012, 2013a, 2013b, 2016). Uncovering more about the biological
and behavioral intermediaries bridging genes and behavior

improves our ability to develop integrated causal models of com-
plex behavioral phenomena.

As our understanding of the causal structure of psychological
and behavioral phenotypes deepens, our discovery of potential
prevention and intervention targets improves (Dick, 2018).
Indeed, each process that we find mediates cause and effect
which represents a candidate for intervention, even if the original
cause itself is immutable. Consider again the example of lithium
administration: researchers localized the differential pattern of
neuronal signaling in lithium responders and non-responders to
the expression of a single gene (LEF1) (Santos et al., 2021).
Rather than structurally alter the gene, these researchers explored
its downstream biological consequences (e.g., transcription path-
ways), thereby identifying “useful phenotypes for drug develop-
ment” (Santos et al., 2021, p. 12). In these cases, the relevant
question is not just whether the cause itself is manipulatable,
but (a) which of the mediating processes are manipulatable and
(b) which processes’ manipulation will generate a meaningful
effect on the outcome. Knowing that LEF1 causes differences in
brain signatures characteristic of lithium response allows us to
identify mechanistic processes that could be pushed upon to
improve treatment responsivity.

The same should be true of behavioral and health-related out-
comes. Understanding how genetic factors unfold along biological
and behavioral pathways across development allows us to isolate
intermediate processes that represent (a) prognostic markers of
future outcomes and (b) targets for programmatic manipulation
that may serve to close the gap in health disparities (Belsky,
Moffitt, & Caspi, 2013b). Behavioral genetics is beginning to
turn toward these applications, and research on body mass
index (BMI) provides a ready example. Large-scale phenotypic
annotation efforts have begun to link genetic variants associated
with adult BMI to eating behaviors in childhood and adolescence
(Abdulkadir et al., 2020; Herle et al., 2021a, 2021b). These studies
have found that, by as early as age 2, a child’s eating behavior may
demarcate genetic risk for adult BMI. This suggests that eating
habits, and possibly related health behaviors, may represent mal-
leable outcomes through which we can mitigate the influence of
genetic differences on BMI. Preliminary evidence supports this
claim. Correlational research has shown that genetic effects on
adult BMI are larger in individuals who live sedentary lifestyles
and consume more sweetened beverages (Li et al., 2010; Qi
et al., 2012). Early experimental findings point toward physical
activity at age 11 as a modifiable behavior for attenuating the
association between genes and BMI (Herle, Pickles, & de
Stavola, 2021b).

Still, we know that not all 11-year-olds will respond equally to
a behavioral intervention. This was one of the main takeaways
from the HPPP that we reviewed at the beginning of this paper.
Simply being exposed to an intervention does not entail how a
given person will respond, for how long the effect will last, or
whether it will generalize to related behaviors across development
(Bailey et al., 2020; Bryan et al., 2021; Green, 2021). To improve
the efficacy and reach of our treatments, we need to understand
the sources of individual differences in their outcomes. We
need to “be concerned with the otherwise neglected interactions
between organismic and treatment variables” (Cronbach, 1957,
p. 681).

Genetic causes can help. By integrating genomic data into lon-
gitudinal, experimental research designs, we can begin to answer
causal questions about heterogeneity in treatment effects and
mechanisms generating the fadeout, persistence, and emergence
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of those effects later in life. A growing body of work in this area
has demonstrated that responses to childhood interventions such
as HPPP are sensitive to genetic variation (Albert et al., 2015;
Brody et al., 2009, 2013; Kuo et al., 2019). Using the framework
for genetic causation that we have advanced in this paper, we
can develop more robust and comprehensive understanding of
how individual differences in constitutional factors influence
treatment outcomes. In particular, we can integrate whole-
genome measures from family members into two-shock designs,
which yield an estimate of the interaction of two random sources
of variation to provide special insight into the (biological and
environmental) contexts in which a particular cause operates
(Almond, Currie, & Duque, 2018). These designs may critically
advance our understanding of why particular individuals are
more or less likely to respond to treatments and why particular
treatment effects are more or less enduring or generalizable.

3.5. Summary

In this section, we considered interpretations of the prevailing
statistical parameters used in behavior genetics – h2 and SNP
effects. We argued that the randomization of offspring to genotype
in meiosis generates a natural experiment, but that genetic effects
on behavior can only be considered causal when other counterfac-
tual conditions are met. The experimental assumptions of inde-
pendence, sample homogeneity, potential exposability, and
SUTVA were discussed with respect to genetic causation. The
takeaway was that within-family designs that leverage the natural
experiment of genetic inheritance are best suited for causal infer-
ence. Guidelines for conceptualizing genetic causes were exam-
ined with respect to a dimension of causal depth: deep causes,
that are unitary, uniform, and explanatory, and shallow causes,
that are local, probabilistic, and causally distal. We discussed
how the knowledge of genetic causes as advanced in this paper
can be applied to advance second-generation aims: genomic
data can improve our understanding of the etiology of complex
psychological and behavioral outcomes, can facilitate the discov-
ery of intervention and prevention targets for health-related out-
comes, and can provide insight into individual differences in
treatment responsivity, fadeout, and emergence.

4. Conclusions

Our motive for writing this paper was to grapple with the concep-
tual issues that have marked the history of behavioral genetics. To
guide our discussion, we turned to philosophical and statistical
thinking on the parameters for detecting and interpreting coun-
terfactual causes. We compared the infrastructure of genetic
inheritance to that of an RCT, and concluded that genetic effects
conditional on the parental genotype are causal in the same sense
as ATEs. To conclude, we provided some suggestions for how this
knowledge can be used to facilitate scientific inquiry and maxi-
mize treatment outcomes.

Doubtless, many will take issue with the conclusions that we
have drawn and the solutions that we have offered. Such responses
are understandable in a field that is so richly complex and so
wildly divisive. We welcome all work that earnestly engages in,
challenges, questions, or explores the ideas that we have presented
in this paper, insofar as it continues to think cautiously and judi-
ciously about the meaning and applications of genomic research.
Knowledge of genetic effects on human behavior will only con-
tinue to grow over the next several decades. We must chart the

course for how we interpret and use this knowledge. As Dov
Fox wrote, “[t]here is nothing especially menacing about knowl-
edge on its own…[a]wareness or understanding of some subject
can be troubling only when those facts are sought for bad reasons,
or when such data are put to bad effects” (Fox, 2019, p. 155).
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Notes

1. The American Psychological Association defines genetic determinism as
“the doctrine that human … behavior and mental activity are largely
(or completely) controlled by the genetic constitution of the individual and
that responses to environmental influences are for the most part innately
determined” (American Psychological Association, 2023). Determinism thus
implies that the presence of certain genetic variants is both necessary and suf-
ficient to produce a certain phenotype, and that this genotype–phenotype rela-
tionship is immutable across the range of possible environmental influences.
2. Lewis attempts to address some of these limitations by employing a similarity
metric (Lewis, 1973a), which indexes the relative similarity between two possible
worlds (e.g., a world with oxygen in the atmosphere is a more similar possible
world to the current world than a world without oxygen in the atmosphere).
While this approach has been lauded for its conceptual logic, its application
to the actual analysis of counterfactuals has been questioned (Bowie, 1979).
3. Approximately 99.9% of DNA is identical for all humans (Collins &
McKusick, 2001). That leaves only 0.1% of the genome (∼2 million genetic
variants) to differ across individuals. This sliver of genetic variation within
human populations is the object of behavior genetics.
4. It is possible that indirect genetic effects not captured by within-family
genetic analyses could in fact be causal. For example, indirect effects in
which the genes that are not transmitted from parent to child are nonetheless
associated with the child phenotype could be due to causal effects of parental
genes on children that are mediated through parental investments: e.g., the
parental genotype causes an increase in their education, which in turn changes
parental behavior, such as reading aloud to the child, in a way that increases
the child’s education. Such a path is not explicitly captured by within-family
genetic analyses, but might be said to be causal, at a remove of one generation.
5. The presence of two mutated copies of the CFTR gene produces an imbal-
ance of sodium chloride to water in epithelial cells in the body. This results in
the secretion of abnormally thick and sticky mucous that clogs air passages.
Cardinal symptoms of cystic fibrosis include respiratory difficulties (coughing,
lung infections, shortness of breath) and unusually salty sweat secretion.
Diagnostic testing typically involves assessing sodium chloride levels in
sweat (LeGrys, 1996).
6. Importantly, shallow and deep represent poles of a dimension of causal
depth. Even paradigmatically deep causes like CF possess shallow features at
some level (e.g., CF is also the product of non-unitary causes, in the sense
that it is caused by two mutated copies of the CFTR gene on the seventh chro-
mosome and the non-existence of a counteracting mutation and the existence
of carbon atoms). Two mutated copies of the CFTR gene on the seventh chro-
mosome is a deep cause in the sense that it operates in relative isolation to pro-
duce a narrow range of outcomes through an identified mechanism.
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Abstract

I argue that advancing “second-generation” or mechanistic
causal knowledge of individual outcomes requires a comprehen-
sive research programme that uses a variety of different methods
in addition to the ones described in the paper under discussion.
I also highlight that environment-focused approaches can be as
instrumental in identifying potential phenotypic causes as gene-
focused approaches.
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Behavioural genetic methods are gaining traction in various areas
of social science. It has been argued that some of these methods,
particularly genome-wide association studies (GWAS) and poly-
genic scores based on them, will generate new causal insights
into individual outcomes such as educational attainment (e.g.,
Freese, 2018; Harden, 2021; Liu & Guo, 2016). Madole &
Harden (M&H) offer a theoretical framework for these arguments
by sketching a two-tiered view of causal investigation in behaviou-
ral genetics that mirrors the commonly used distinction between
difference-making and mechanistic types of inquiry (see Tabery
[2014] for a philosophical discussion of this distinction in the
context of behavioural genetics). In what follows, I will not eval-
uate the arguments concerning the first tier (including the pro-
posed analogy between a within-family study of polygenic
scores and a randomised controlled trial) but will focus on the
second tier, which the authors term “second-generation causal
knowledge” and which may also be called mechanistic knowledge
or mechanistic understanding.

Let us assume one has successfully identified some single-
nucleotide polymorphisms (SNPs) linked with causal genetic var-
iants. In the authors’ view, once that is done, a goldmine of
second-generation causal discoveries (by which they
mean discoveries of higher-level causal mechanisms) awaits the
researcher who is keen to explore the processes through which
genetic effects manifest. The mechanisms’ supposed components
include both phenotypic traits and environmental factors that
contribute to individual outcomes and could serve as intervention
targets. The identification of causal mechanisms is sometimes
seen as the only strong rationale for genetically informed inquiry
in the policy-oriented social sciences. According to Cesarini and
Visscher (2017), “it is only to the extent that genetic information
makes it possible to tailor more effective interventions that genetic
data may be a useful supplement to systems already in place”
(p. 3). At the same time, mechanism elucidation is not necessarily
guaranteed or even significantly facilitated by “first-generation”
genetic findings, contrary to what M&H seem to suggest.
Establishing a causal link between a phenotypic or environmental
variable and an outcome presents a significant challenge of its
own, requiring a mix of observational and experimental evidence
generated by a variety of methods. Top-down approaches such as
“phenotypic annotation” (Belsky & Harden, 2019) that are men-
tioned in the paper can help identify networks of phenotypic and
environmental correlates, but disentangling the causal relations
within those networks – and pinpointing suitable intervention
targets – is a task that goes beyond a simple mapping of associa-
tions. Some techniques for causal inference about phenotypic
mediators based on observational genetic data have been
described elsewhere (e.g., Briley, Livengood, & Derringer, 2018;
Pingault et al., 2018) but face several significant challenges,
including widespread pleiotropy. M&H briefly describe “integrat-
ing genomic data into longitudinal, experimental research
designs” (target article, sect. 3.4, para. 7) as a way of meeting
the demands of causal inference at this stage of investigation
but do not articulate a well-developed research programme with
a clear added value for genetic methods.

That brings us to another question – why should one use
genetic information as a starting point to elucidate causally rele-
vant phenotypic and environmental factors for a particular out-
come? Genetic data are not the only possible handle on the
kind of phenotypic characteristics and processes scientists are
interested in (especially given the adage that all traits result
from a combination of genetic and environmental factors).

Interestingly enough, “first-generation” knowledge about environ-
mental causes can likewise be used (and has been used) as a
springboard for mechanistic inquiry, even probing into some of
the same causal intermediaries as genetically informed research,
including cognitive or psychological characteristics of individuals.
For instance, it is known that socioeconomic status explains a
large proportion of the variance in educational attainment in dif-
ferent societies (see e.g., Eriksson, Lindvall, Helenius, & Ryve,
2021). Scientists have linked the effects of socioeconomic status
on educational attainment with differences in phenotypes such
as executive function (Hackman, Gallop, Evans, & Farah, 2015).
This demonstrates that once we arrive at a solid understanding
that a particular environmental factor is an important difference
maker, it can then be used to investigate possible causal pathways;
genetic knowledge is not unique in this sense.

In this context, one worry an advocate of genetic methods
might have is that the observed effects of environmental factors
such as socioeconomic background could also reflect genetic dif-
ferences between individuals and therefore fall short of the stan-
dards for causal inference. However, it is possible to control for
these differences in order to arrive at more accurate estimates of
environmental influence. For instance, Kendler, Turkheimer,
Ohlsson, Sundquist, and Sundquist (2015) have shown in an
adoption study of siblings that being adopted into a family with
a higher socioeconomic status generated significant advantages
in terms of measured IQ after controlling for genetic factors.
This suggests a more limited albeit important role for genetic
tools, including polygenic scores: as controls in the study of envi-
ronmental variables. Even though this application is not without
its pitfalls (see Akimova, Breen, Brazel, & Mills [2021] on the
potential for introducing bias), when applied with care, genetic
controls may help address some of the worries that the “first-
generation” knowledge of environmental factors does not meet
a stringent epistemic standard.

In summary, “second-generation” goals of causal inquiry in
the context of human behaviour cannot be achieved by genetic
methods alone, nor do genetically informed research designs pro-
vide the only possible path towards a mechanistic understanding.
Therefore, it would be desirable to clearly situate these designs
within the wider disciplinary and methodological terrain, indicat-
ing how they relate to the other known ways of generating the epi-
stemic goods that are being sought.
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Abstract

Madole & Harden argue that the Mendelian reshuffling of genes
and genomes is analogous to randomised controlled trials. We
are not convinced by their arguments. First, their recipe for
meeting the demands on randomised experiments is inherently
inconsistent. Second, disequilibrium across chromosomes con-
flicts with their assumption of statistical independence. Third,
the genome-wide association study (GWAS) method has many
pitfalls, including low repeatability.

Madole & Harden (M&H) attempt to unravel the role of
heredity in human behaviour by arguing that the methods of
causal analysis can be applied to behavioural genetic data,
thus establishing causal links between genes and behaviour.
Their key argument is that “within-family genetic effects repre-
sent the product of a counterfactual comparison in the same way
as average treatment effects from randomised controlled trials”
(target article, abstract). Based on this argument, they “advance
a framework for identifying, interpreting, and applying causal
effects of genes on human behavior” (target article, abstract).
While we agree with the authors that human behaviour genetics
needs a sound foundation, we see at least three reasons why their
proposed framework is not suitable for providing such a
foundation.

The first reason is the inherent inconsistency of the proposed
approach. M&H discuss whether and when behavioural genetic
experiments meet four critical demands on randomised experi-
ments. They argue that the first three demands (independence,

sample homogeneity, potential exposability) can be met if the
analysis is based on sibling studies, where siblings grow up in a
common environment. In contrast, the fourth demand, SUTVA
(stable unit treatment value assumption), requires that the siblings
do not affect each others’ behaviour, that is, grow up in different
environments. The fourth demand (growing up in different envi-
ronments) is contradictory to the first three demands (growing
up in a common environment). Thus, at least one of the demands
will be violated in any genetic data set. Obviously, this undermines
M&H’s argument that within-family genetic effects are comparable
to the outcome of randomised controlled trials.

The second reason is an unfounded extrapolation from
single-gene to genome-wide causation. The key argument in
the target article is that Mendelian inheritance has similar prop-
erties as the randomisation procedure of controlled trials.
Mendel’s rules, however, apply to single genes or unlinked
pairs of genes, while M&H are mainly interested in the causal
analysis of genome-wide association studies (GWASs), where
thousands of single-nucleotide polymorphisms (SNPs) are con-
sidered simultaneously.

M&H are aware of this problem, in which the physical link-
age of genes on a chromosome results in the co-inheritance of
alleles at linked loci and subsequent correlations across loci.
Consequently, they propose to focus on “a set of alleles that
are all in high linkage disequilibrium with each other (but not
in linkage disequilibrium with other alleles)” (target article,
sect. 3.2.1, para. 6). In this approach, it is crucial to identify
such sets of alleles. If the physical linkage of gene loci would
be the sole (or most important) cause of linkage disequilibrium,
the proposed method might be feasible, as the SNPs used in
GWASs provide a physical linkage map, allowing to identify
chromosomal regions that are closely linked. However, the
term “linkage disequilibrium” is misleading. It suggests that
“disequilibrium” (as statistical associations across loci) is mainly
caused by physical linkage. Yet, factors like natural and sexual
selection, non-random mating, genetic drift, or gene flow can
create considerable disequilibrium at unlinked loci, such as loci
on different chromosomes (Hedrick, 2005). Alleles at different
loci can, for example, get associated through selection if they
produce a high-fitness genotype in combination (but not on
their own).

Theoretical considerations suggest that such “epistatic effects”
(statistical interactions between genotypes at two or more loci) are
common. For example, the evolution of female preferences in sex-
ual selection largely relies on the build-up of disequilibrium
between sender and receiver genes (Kuijper, Pen, & Weissing,
2012). Regulatory networks (such as gene-regulatory networks,
metabolic networks, or the immune network) are another impor-
tant class of examples, as a large percentage of human genes are
involved in such networks (Chatterjee & Ahituv, 2017). Genes
underlying a regulatory network are functionally linked (through
selection on the operation of the network) in intricate and unpre-
dictable ways (Van Gestel & Weissing, 2016, 2018), and their epi-
static interaction will likely result in linkage disequilibrium (even
in the absence of physical linkage).

Controlled crossing experiments in animals indeed confirm
ample disequilibrium caused by epistatic effects (Flint &
Mackay, 2009; Mackay, 2014). Such experiments cannot be con-
ducted on humans, but likely epistasis is common in our species
too. The problem is that epistasis, and its associated disequili-
brium, tends to remain hidden in GWASs (Mackay, 2014).
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This implies that a major source of statistical dependence
remains hidden to the researcher, making it almost impossible
to correct for linkage disequilibrium in the way suggested by
M&H.

The third reason is based on previously documented pitfalls of
the GWAS method. M&H have high expectations regarding the
GWAS method, while this method is heavily criticised in other
branches of genetics because of its low repeatability and its ten-
dency to produce false positives (e.g., Marjoram, Zubair, &
Nuzhdin, 2014; Zhou et al., 2020; Zuk, Hechter, Sunyaev, &
Lander, 2012). Low repeatability is a major problem, as it either
indicates the limited ability of these studies to generalise (i.e.,
big differences between study populations in how genes cause
behaviour) or that most results are actually artefacts of the
model (false positives). In the GWAS method it is possible to
set the sensitivity of models. Yet, this is a complicated trade-off,
especially when using the method to find many genes with
weak effects. When the sensitivity is low, only genes with strong
effects can be found, which might result in a bias, as possibly
important other genes (with weaker effects) cannot be found.
On the contrary, setting the sensitivity high will result in many
false positives, which might also result in wrong conclusions.
Even if the sensitivity is kept constant between studies, low repeat-
ability is found. To increase repeatability of studies, statistical cor-
rections can be added. However, these corrections are generally
limited in their success, as artefacts can still appear (e.g., Mills
& Mathieson, 2022).

In conclusion, we argue that the causal framework proposed
by M&H is not suited to understand the effects of genes on
behaviour. While we agree with the authors that human behaviour
genetics needs a sound causal foundation, this remains a formida-
ble challenge.
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Abstract

Madole & Harden plead for better integration of causal knowl-
edge of different depths to understand complex human traits.
Classically, local causes – a particular type of shallow causes –
are considered less useful than more generalisable causes, giving
a false impression that the latter causes are more useful and
desirable. Using a simple example, I show that sometimes the
contrary is true.

Madole & Harden (M&H) provide an insightful analysis showing
that different types of causes can play different roles in helping
us understand the aetiology of complex traits. They make a point
often underappreciated – namely, that average treatment effects
(ATEs), such as those obtained from randomised controlled trials
(RCTs), have some of the same limitations as those often attributed
to heritability estimates and single-nucleotide polymorphism asso-
ciations. Similarly, heritability estimates have often been charged
with being only local parameters – when such a charge is rarely
made against RCTs. Further, the charge of locality gives the false
impression that a less local causal relationship – one that could
be observed under a broader range of conditions – is always
more useful than a local one. I show here that this conclusion
does not follow; in some cases, which I illustrate with a theoretical
example, local causal knowledge can be more useful for explanation
and intervention than more generalisable knowledge.

Since Lewontin (1974), it is commonly accepted that heritabil-
ity estimates originating from an analysis of variance suffer from
the problem of locality: one estimate obtained in one population,
even if unbiased, cannot and should not be extrapolated to other
populations. This position, particularly its extreme form, is ques-
tionable (see Sesardic, 2005, pp. 75–80); however, generally, local-
ity is considered a detrimental feature for establishing causal
relationships. Being able to generalise a result is an important
aspect of science, and locality stands in its way.

The problem of locality ties in with the analysis of causation
provided by Woodward (2010) in the context of biological science
(see also Bourrat [2020, 2021], for discussions in the specific con-
text of heritability). Intervening on a variable (X) permits estab-
lishing whether X is a cause of another variable (Y) but not
comparing it to different causes. To that effect, several dimensions
of causal relationships have been proposed in the literature,
among which is stability. Some causal relationships are less stable
than others – that is, they break down more easily when the back-
ground (i.e., the variables of the system that are not X or Y)
changes. Thus, locality and stability are inversely related. The
more a cause is local – the less it would generalise beyond the
population where it was established – the less stable it is.
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An ATE measures whether X makes a difference on Y, while all
other variables in the background are randomised. As such, if a
difference in Y is observed, one can be confident that the relation-
ship tested is as stable as there is variation in the background.
More importantly, however, it tells us nothing about whether
this relationship holds under any of the randomised backgrounds,
only that X makes, on average, a difference on Y (often with a cer-
tain magnitude). Conversely, if no causal relationship exists
between X and Y, on average, in the range of backgrounds tested,
this does not tell us whether it would also be the case in any of the
specific backgrounds.

To make the point slightly more concrete (see Fig. 1), suppose
a global population of individuals with two possible genotypes
(G1 and G2) in equal proportions. Each genotype is associated
with either two phenotypes with the same probability, T1 and
T2 (e.g., two levels of anxiety, “low” for T1 and “high” for T2),
depending on the background with two randomised states in
equal proportions, Z1 and Z2, that could represent the environ-
ment. Intervening on G in the global population would lead to
the conclusion that the genotype is not a cause of T. However,
suppose that (unknown to the experimenter) in a local population
“1” (part of G) containing the same proportion of the two geno-
types but where only the background Z1 exists, intervening on G
would lead to a deterministic change in T (with G1→ T2 and
G2→ T1). Further, in another local population “2” (also part of
G), identical to the first except that only Z2 exists, the opposite
deterministic causal relationship would be established (with
G1→ T1 and G2→ T2). In each local population, the conclusion
would be that an individual’s genotype causes the trait, but that
a different genotype causes a different trait’s value in the two
populations.

This last conclusion would be more adequate than the conclu-
sion reached in the global population that G does not cause anx-
iety. This is so because intervening on the background of some
individuals in the population experiencing the “wrong” environ-
ment could affect their phenotype and have the benefit of reduc-
ing their anxiety.

A similar demonstration using more complex variables than
binary variables – although more tedious – could be devised to
show that a small global average effect can be the result of two
(or more) large effects established in more local backgrounds
but going in different directions.

The lesson from this simple case is that local or unstable causal
relationships can have more value than more stable ones when the
causal relationship is characterised by averages. This flies in the
face of the commonly accepted view that more is better when it
comes to causal stability and uncovers a well-known trade-off in
the philosophy of modelling literature between generality and pre-
cision (Levins, 1966). The point sketched here speaks directly to
M&H’s urge not to dismiss shallow causes once integrated into
a more thorough causal analysis.

Acknowledgment. I thank James Madole and Paige Harden for discussions
on this topic.

Financial support. This work was supported by an Australian Research
Council Discovery Early Career Research Award (Grant ID: DE210100303).

Competing interest. None.

References

Bourrat, P. (2020). Causation and single nucleotide polymorphism heritability. Philosophy
of Science, 87, 1073–1083.

Bourrat, P. (2021). Heritability, causal influence and locality. Synthese, 198, 6689–6715.
Levins, R. (1966). The strategy of model building in population biology. American

Scientist, 54, 421–431.
Lewontin, R. C. (1974). The analysis of variance and the analysis of causes. American

Journal of Human Genetics, 26, 400.
Sesardic, N. (2005). Making sense of heritability. Cambridge University Press.
Woodward, J. (2010). Causation in biology: Stability, specificity, and the choice of levels

of explanation. Biology & Philosophy, 25, 287–318.

All that glisters is not gold: Genetics
and social science

Callie H. Burt

Department of Criminal Justice & Criminology, Andrew Young School of Policy
Studies & Center for Research on Interpersonal Violence (CRIV), Georgia State
University, Atlanta, GA, USA
cburt@gsu.edu
www.callieburt.org

doi:10.1017/S0140525X22002217, e186

Figure 1 (Bourrat). Causal relationship between G and T in three populations. (a) In a global population with two randomised backgrounds (Z1 and Z2), G does not
appear to be causing T: intervening on G, on average, does not affect the probability of expressing one of the two values of T. (b) In the local population “1,” with a
constant background Z1, intervening on G leads to a change in T, and it is established that this relationship is G1→ T2 and G2→ T1. (c) In the local population “2,”
with a constant background Z2, the same is observed as in the local population “1,” except that the relationship is reversed so that G1→ T1 and G2→ T2.

22 Commentary/Madole and Harden: Building causal knowledge in behavior genetics

https://doi.org/10.1017/S0140525X22000681 Published online by Cambridge University Press

https://orcid.org/0000-0001-7191-9602
mailto:cburt@gsu.edu
https://www.callieburt.org
https://doi.org/10.1017/S0140525X22000681


Abstract

In their target article, Madole & Harden offer an account of
“what it means for genes to be causes” of social outcomes to bol-
ster their claim that genetics should be incorporated into social
science with practical implications. Here I object to several key
features of their arguments, their representation of the state of
science, and claims about the utility of genetics for social science
and society.

In their target article, Madole & Harden (M&H) provide a
lengthy exposition on genetic causation to undergird their argu-
ment that social scientists not only can but should incorporate
genetics into their research on human behavior. Pointing to the
recent “discovery of genes” associated with social outcomes and
the potential utility for social science, the authors argue that care-
ful analysis of what it means for genes to be causes of social
behaviors is needed. I agree.

The devil is, as usual, in the details. With much to say and lim-
ited space, I first identify and set aside points of agreement between
M&H and me while highlighting key disagreements. I then discuss
my objections to their arguments. With unlimited space, I would
challenge methodological issues related to their model of genetic
causation, for example, violation of SUTVA, the non-generalizability
of causes of sibling differences to causes of differences between
unrelated people in the population, and so on. Here, I focus on
what I view as more fundamental challenges.

Shared understandings and points of departure

There is, in my reading, much upon which M&H and I agree
about the role of genetics in human behavioral differences. Our
disagreement is rooted in what we can know about causes of
human behavior, given the nature of development and given lim-
itations of current methods and biological knowledge, and thus
whether genetics is useful for social science. In particular:

(1) We agree that genetic differences matter for human social
outcomes – achievements, behavior, physical health, person-
ality – in a complex, context-sensitive way. We disagree that
complex, social, non-disease achievements or behaviors, like
educational attainment, having ever had same-sex sex, or
income, are appropriate “traits” for genetic study.

(2) We agree that studying processes that are malleable prognostic
markers of human outcomes and thus targets for intervention
to reduce disparities and improve health and well-being is valu-
able for science and society. We disagree that studying putative
genetic linkages to these intermediate processes is necessary or
useful, especially at the current state of the science.

(3) We agree that genetic research has the potential to advance
understanding of human health and disease. We disagree
that genetic research is gainfully employed to enhance knowl-
edge on the etiology of complex human social behavior.

(4) We agree that those previous iterations of social science
genetics employed in the service of “scientifically” demon-
strating the genetic inferiority of socially subordinate groups
should be rejected as flawed and denounced. We disagree
that the problems with social science genetics are rooted in
political orientation or limited to ethical issues and thus
solved by publicly repudiating genetic determinism and rec-
ognizing context-dependency and gene–environment

interactionism. Crucially, as I outlined in my target article,
the problems are not just political but are conceptual (e.g.,
Burt, 2023; Kaplan & Turkheimer, 2021), methodological
(Coop & Przeworski, 2022; Morris, Davies, Hemani, &
Smith, 2020; Richardson & Jones, 2019), and biological
(Crouch & Bodmer, 2020; McClellan & King, 2010).

I do not doubt that M&H have good intentions. But good inten-
tions – including an explicit “anti-eugenics” approach – are not
enough.

Having sketched key sources of disagreement rooted in shared
understandings, I turn to four issues that deserve response, chal-
lenge, and/or clarification.

Oversimplifications and obfuscations

Throughout M&H’s target article, biological complexity is down-
played, and terminology is misleading, which obscures substantial
difficulties and biological unknowns. For example, M&H frame
their study as being about “genes” building on “the discovery of
genes associated with human phenotypes like educational attain-
ment and substance use disorders” (target article, abstract). To be
sure, given that the intended audience includes social scientists
who lack genomic expertise including familiarity with genetic
terminology, the gains in readability by referencing “genes identi-
fied” versus a more accurate, “genetic variants that are non-causal
markers of some unknown causal SNPs likely in proximity” are
substantial. However, this simplifying language is misleading.
Many social science readers might reasonably interpret this use
of “genes” to indicate identified different versions of genes with
defined functions that affect social outcomes through well-
characterized biological pathways. The reality is nothing of the
sort.1 As I discuss at length in my target article, because of a
host of limitations, current sociogenomics methodologies
(i.e., genome-wide association studies [GWASs] and polygenic
scores [PGSs]) are ill-suited for identifying specific “genes associ-
ated with” complex highly polygenic outcomes (Burt, 2023;
Charney, 2022; Kaplan & Turkheimer, 2021).

In glossing over the difficulty of biological interpretation,
M&H misrepresent the complexity and uncertainty in moving
from risk loci to causal variants acting in genes with defined
functions. They note that because “‘genes’ are studied at an inter-
mediate level of resolution.… Researchers can then use ‘fine map-
ping’ techniques to gain higher resolution” as if fine-mapping
techniques were straightforward or unproblematic rather than
highly sophisticated guesswork based on limited biological knowl-
edge (see discussions in Burt, 2023; Charney, 2022; Crouch &
Bodmer, 2020). Were fine mapping and gene identification so
easy.

Irreducibly social behaviors resist genetic reductionism

While their specific claims about utility are meager and usually
vague, M&H point the value of genetics to enhance social scien-
tific understanding of “how genetic factors unfold along biological
and behavioral pathways across development” (target article, sect.
3.4, para. 5). To be sure, the idea of tracing genetic pathways from
molecules to behavior sounds compelling. In contrast to genetic
diseases, however, tracing genetic variants to complex social
behavioral differences is impracticable. Because of biological and
conceptual limitations – including the fact that complex social
traits are defined by social context and thus irreducibly social –
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mapping genetic variants to social outcomes is infeasible, even
leaving aside statistical issues (e.g., environmental confounding,
counterfactual model assumption violations) and ignoring the
problem of misidentifying downward causation as upward genetic
causation (see below).

Given this, the search for specific genetic causes of complex
social (non-disease) traits like education and crime remains a mis-
guided endeavor, even if our current methodologies facilitated
such precise identification, which they do not.

To be clear, alleviation of this situation will not come from new
genomic research tools, sophisticated statistical algorithms, larger
sample sizes, or within-family studies. Complex social traits like edu-
cational attainment and crime, unlike cystic fibrosis and sickle cell
anemia, are social traits not biological ones (Burt, 2023;Dupré, 2012).

Lack of utility

This inability to map specific (miniscule) genetic effects to social
outcomes is, however, no great loss. We do not need genetics to
“isolate intermediate processes that represent (a) prognostic
markers of future outcomes and (b) targets for programmatic
intervention” (e.g., early childhood eating habits, health behav-
iors, education-related behaviors) (target article, sect. 3.4, para. 5).

Using body-mass index (BMI) as a “ready example” to illustrate
the potential value of genetics for social science, M&H note that
studies linking genetic associations with “phenotype annotation
efforts” “have found that, by as early as age two, a child’s eating
behavior may demarcate genetic risk for adult [high] BMI” (target
article, sect. 3.4, para. 5). Given what we know about the impor-
tance of early childhood and eating behaviors, do we need genetics
to suggest that early childhood eating behaviors are important in
shaping adult BMI? I think not. As I have argued elsewhere, the
justification for incorporating genetics into social science to reveal
well-established social patterns is lacking. This is particularly true
because, as we all agree, genetic does not mean unchangeable, and
however genetically influenced, environments always matter. The
targets for interventions and policies are the intervening psychoso-
cial mechanisms (diet, self-control) and/or the environments (e.g.,
parenting) to reduce adverse health outcomes, reduce social
inequalities, and enhance social flourishing.

In sum, from the fact that genetic differences matter for devel-
opment and behavioral differences, it does not follow that incor-
porating measures of genetic differences (invariably imprecise and
environmentally confounded) will advance social science models
or policy.

Misidentifying downward (social) causation as upward
(genetic) causation

Finally, even a rigorous counterfactual study of genetic causation
cannot distinguish authentic (“upward”) genetic causation (from
genetic differences to trait differences through biological path-
ways) from downward social causation (e.g., Burt, 2023).
Although not now, we hope one day we can all agree that a
model that identifies downward causation as “genetic” (and
thus would identify darker skin pigmentation alleles as genetic
causes of lower income shaped by sociohistorical processes of
racial/ethnic discrimination) is wrong and misleading.

In sum, whileM&H extol the utility of these studies for social sci-
ence and society, given limitations in what we know, can know, and
can measure, what genetics offers social science remains vague, mis-
guided, and/or overhyped. Moreover, this is to say nothing of the

potential dark side, including reifying an oversimplified, flawed,
and catchy notion of a “genetic predisposition” for complex social
traits stratified along class, racial/ethnic, and other axes of inequality.

In conclusion, complex social phenotypes like educational
attainment are not biological phenotypes; human behaviors are
irreducibly social and contingent; and their causes are heteroge-
neous, intertwined, and unable to be “unbraided” by observa-
tional methods with even the best statistical genetic
methodologies. Given this, the endeavor to identify “genes” or
genetic causes of normal variation in educational attainment
given both the current state of science and the nature of the “phe-
notype” is misguided. Such endeavors also waste time, energy, and
skills of talented scientists, such as M&H.
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Note

1. The authors’ use of genetic disease examples with well-characterized biolog-
ical pathways (cystic fibrosis) surely reinforces such simplified understandings.
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Abstract

Evidence of a causal role for genes in human behavior underpins
genetic essentialism, the scientifically flawed and socially hazard-
ous idea that heritable characteristics are immutable. Behavior
geneticists can challenge this idea by designing research that
brings the contextual dependence of heritability estimates into
sharper focus, and by incorporating a relevant statement into
research reports and public outreach.

In their well-argued paper, Madole & Harden take aim at con-
cerns of some scientists that genome-wide association study
(GWAS) research will reinforce the idea that inequalities in soci-
ety are fixed and proper.

They declare that “such a picture…is unwarranted” on the
grounds that “genetic causes for human behavioral traits are non-
uniform, non-unitary and non-explanatory” (target article, sect.
3.3, para. 4). We agree that the concerns have no scientific
bases, but consider that the concerns, and more generally worries
about genetic essentialism (Dar-Nimrod & Heine, 2011), are
grounded in reality. In this commentary, we explore that reality
and suggest ways in which behavioral genetics might address its
influence on public discourse and policy.

Genetic essentialism is a family of beliefs centered on the ideas
that if genes are known to play a role in shaping human differences
then those differences are, to a considerable extent, natural and
entrenched. The differences cover not only society-wide structures
that license privilege, so-called social Darwinism, but ones expressed
in individuals, often enough focused on less favorable outcomes in
health and behavior, which are also seen as hard to alter.
Admittedly, this pessimism can go hand-in-hand with a sense of
relief in that a genetically influenced difficulty can be seen as
no-one’s “fault.” This is the mixed-blessing model developed by
Haslam and Kvaale (2015). But genetic essentialism can, and does,
undermine the acceptance by individuals of efficacious interventions
and hamper their implementation by professionals (Haslam &
Kvaale, 2015; Lebowitz, Ahn, & Nolen-Hoeksema, 2013).

We propose two ways that behavior-genetic research commu-
nity could contribute to combatting genetic essentialism, whose
adverse effects are now well documented (Dar-Nimrod &
Heine, 2011). One is in the design of the research agenda, the
other in public communication of research results. Regarding
research: The aphorism that “genes are not destiny” can be, and
if possible should be, brought into clear focus by demonstrating
its truth within the study of single phenotype. There exist useful
demonstrations of different patterns of heritability across groups
defined by location (e.g., lower heritability of early reading in
Scandinavia compared to the United States and Australia,
Samuelsson et al., 2008) and across groups defined by time
(e.g., an increase in heritability of educational attainment in
Norway for males born after 1940, Heath et al., 1985). In addition,
demonstrations of gene–environment interplay, where it exists
(see Grasby, Coventry, Byrne, & Olson, 2019), underline the
dependence of some heritability estimates on environmental fac-
tors such as socioeconomic level. And in an additional and infor-
mative level of complexity, illustrations of different cross-national
patterns of gene–environment interaction can deepen insights
into environmental influences on phenotypes (Grasby et al.,
2019; Tucker-Drob & Bates, 2016).

Researchers can, and should, also maximize opportunities
afforded by analytic maneuvers to expose contextual influences

on heritability estimates. For example, in a study using the classi-
cal twin design when samples are mixed in terms of location,
time, or participant type, the choice to standardize scores within
groups can generate higher estimates of genetic influence than the
choice of not to standardize. In our cross-national study of early
reading (Byrne, Olson, & Samuelsson, 2013), Scandinavian chil-
dren in grade 1 read at a lower average level than those in the
United States and Australia, because of the later start of reading
instruction in Sweden and Norway. Employing within-country
standardization, the genetic influence on reading comprehension
was estimated at 0.62; in the absence of within-country standard-
ization, the estimate dropped to 0.38 with a corresponding rise in
the shared environment effect. As a thought experiment, imagine
a whole-world twin study without country standardization;
doubtless the biggest influence on variation in reading ability at
any particular age will not be genes but curriculum policies and
the resources available for education, showing up in analyses as
shared environment. Such a picture would reinforce the value
of projects like that of Lyytinen and colleagues (Ojanen et al.,
2015), aimed at bringing the benefits of basic reading research
to educational practice in less developed nations. Unthinking
acceptance of the conclusion, derived from twin studies con-
ducted largely in the United States, Europe, and Australia, that
half or more of the variance in reading skill is heritable would
tend to undermine efforts like Lyytinen’s. Thus, where it is appro-
priate to privilege a humans in general perspective over humans
within particular contexts, analytic choices can be made to do
exactly that.

Thus, in designing behavior-genetic research, features that
enhance the visibility of context on heritability estimates should
be front and center. International cooperation would be one
way to promote this goal, in cases at least where there might be
reasons to believe that country differences could influence levels
and expression of a phenotype. Geneticists working on devising
polygenic risk scores for human conditions, especially diseases,
may be ahead of behavior geneticists in that there are calls to
increase the ancestral diversity of participant groups (Surigo,
Williams, & Tishkoff, 2019) in response to (a) the predominance
of populations with European ancestry in studies to date, and (b)
accumulating evidence that scores derived from European sam-
ples do not always hold up in predicting disease status in
African, Asian, Latino, and other ancestry groups (Belsky et al.,
2013; Grinde et al., 2019). Behavior genetics would probably
replace ancestral groups with sociocultural ones on the grounds
that it is those groups that afford the most likely source of contex-
tual influence on patterns of heritability, not ancestry-driven dif-
ferences in linkage disequilibrium, and in the other sources of
variability in polygenic risk score analyses (Surigo et al., 2019).

Armed with a substantial corpus of data on contextual depen-
dence of heritability estimates, behavior genetics could develop a
core statement to allay the concerns of “end-users” such as edu-
cators, clinical psychologists, criminologists, and lawyers that
genes are indeed destiny. A group such as the Behavior
Genetics Association could be tasked with crafting such a state-
ment, which could then be incorporated, suitably modified for
particular circumstances, into research publications and, more
generally, into public outreach campaigns.

Acknowledgments. Many colleagues have contributed to the research and
ideas incorporated into our commentary; here we acknowledge in particular
Stefan Samuelsson, Linköping University, who initiated and led the
Scandinavian component of our twin studies.

Commentary/Madole and Harden: Building causal knowledge in behavior genetics 25

https://doi.org/10.1017/S0140525X22000681 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X22000681


Financial support. Our research was supported by the Australian Research
Council (DP 150102441, DP 0663498, DP 0770805), the National Institute
for Child Health and Human Development (P50 HD 27802, R01 HD
38526), the Swedish Research Council (2011-1905), and the Swedish Council
for Working Life and Social Research (2011-0177).

Competing interest. None.

References

Belsky, D. W., Moffitt, T. E., Sugden, K., Williams, B., Houts, R., McCarthy, J., & Caspi, A.
(2013). Development and evaluation of a genetic risk score for obesity. Biodemography
and Social Biology, 59, 85–100. doi: doi.org/10.1080/19485565.2013.774628

Byrne, B., Olson, R. K., & Samuelsson, S. (2013). Subsample standardization in twin stud-
ies of academic achievement. In Annual conference of the behavior genetics association,
July, Marseilles, France.

Dar-Nimrod, I., & Heine, S. J. (2011). Genetic essentialism: On the deceptive determin-
ism of DNA. Psychological Bulletin, 137, 800–818. https://doi.org/10.1037/a0021860.

Grasby, K. L., Coventry, W. L., Byrne, B., & Olson, R. K. (2019). Little evidence that socio-
economic status modifies heritability of literacy and numeracy in Australia. Child
Development, 90, 623–637. doi: 10.111/cdev.12920

Grinde, K. E., Qibin, Q., Thornton, T. A., Simin, L., Shadyab, A. H., Chan, K. H. K., …
Sofer, T. (2019). Generalizing polygenic risk scores from Europeans to Hispanics/
Latinos. Genetic Epidemiology, 43, 50–62. doi: doi.org/10.1002/gepi.2216

Haslam, N., & Kvaale, E. P. (2015). Biogenetic explanations of mental disorder: The
mixed-blessings model. Current Directions in Psychological Science, 24, 399–404.
https://doi.org/10.1177/096372141558808

Heath,A.C., Berg,K., Eaves, L. J., Solaas,M.H., Corey, L.A., Sundet, J.,…Nance,W.E. (1985).
Education policy and the heritability of educational attainment. Nature, 314, 734–736.

Lebowitz, M. S., Ahn, W.-K., & Nolen-Hoeksema, S. (2013). Fixable or fate? Perceptions
of the biology of depression. Journal of Consulting and Clinical Psychology, 81, 518–
527. https://doi.org/10.1037/a00311730

Ojanen, E., Ronimus, M., Ahonen, T., Chansa-Kabali, T., February, P., Jere-Folotiya, J., …
Lyytinen, H. (2015). GraphoGame – A catalyst for multi-level promotion of literacy in
diverse contexts. Frontiers in Psychology. 6(671), 1–13. doi: 10.3389/fpsyg.2015.00671

Samuelsson, S., Byrne, B., Olson, R. K., Hulslander, J., Wadsworth, S., Corley, R., …
DeFries, J. C. (2008). Response to early literacy instruction in the United States,
Australia, and Scandinavia: A behavioral-genetic analysis. Learning and Individual
Differences, 18, 289–295. doi: doi.org/10.1016/j.lindif.2008.03.004

Surigo, G., Williams, S. M., & Tishkoff, S. A. (2019). The missing diversity in human
genetic studies. Cell, 177, 26–31. doi: doi.org/10.1016/j.cell.2019.02.048

Tucker-Drob, E. M., & Bates, T. C. (2016). Large cross-national differences in gene × soci-
oeconomic status interaction on intelligence. Psychological Science, 27, 138–149. doi:
doi.org/10.1177/0956797615612727

Causal dispositionalism in
behaviour genetics

María Cerezo

Department of Logic and Theoretical Philosophy, Complutense University of
Madrid, Madrid, Spain
macere03@ucm.es; https://philpeople.org/profiles/maria-cerezo

doi:10.1017/S0140525X22002060, e188

Abstract

Causal dispositionalism developed in metaphysics of science
offers a useful tool to conceptualize shallow causes in behaviour
genetics, in a way such that (a) it accounts for complex aetiology
and heterogeneity of effects, and (b) genetic causal contribution
can be considered to be explanatory. Genes are thus causal pow-
ers that make a difference.

One of the virtues of Madole & Harden’s (M&H’s) approach to
causation in behaviour genetics is their ability to combine their

honesty in acknowledging the limits and gaps of genome-wide
association study (GWAS) methodology and, more generally, in
behaviour genetics with their determination to point out the
way in which first-generation causal knowledge can open the
door to ways in which second-generation causal knowledge can
be pursued. As a consequence of the first attitude, their analysis
represents a step further to overcome genetic determinism and
essentialism (target article, sect. 1.2, para. 4). The second attitude
leads them into the sort of pluralism that is commonly accepted in
philosophy of science and medicine (see, e.g., Rocca & Anjum,
2020). In their approach, M&H have recourse to some work in
the metaphysics of science to deploy the theoretical framework
of their investigation. The interventionist theory of causation
developed by Woodward (2005), which has been applied to genet-
ics by Waters (2007) and by Woodward (2010) himself, provides
them with a useful tool to conceptualize the notion of cause
behind first-generation causal knowledge in genetics. In addition,
recourse to mechanisms (Craver & Darden, 2013; Glennan, 1996)
accounts for the kind of explanation required in second-
generation causal knowledge, crucial for understanding the aetiol-
ogy of complex phenomena. In this brief commentary, I intend to
bring to light another metaphysical tool that can help M&H to
overcome some limitations and offer a richer picture, namely,
the concept of capacity or disposition (Cartwright, 1989;
Mumford, 1998). Mumford and Anjum have developed a dispo-
sitionalist theory of causation (Mumford & Anjum, 2011), and
have applied it to science (Anjum & Mumford, 2018), medicine
(Rocca & Anjum, 2020), and genetics (Mumford & Anjum,
2011, Ch. 10), conceiving of genes as powers or bundles of powers
“coded” into the structural complexity of DNA strands.

Capacities, powers, or dispositions (I use these terms as equiva-
lent) are “properties or potentials of things or systems, that can
become manifested under certain conditions” (Rocca & Anjum,
2020). Clinical randomized controlled trials (RCTs), for instance,
can give rise to claims about the capacity or power of certain sub-
stances to induce specific effects in particular contexts. Such associ-
ation of RCTs to capacity claims “provide a conduit from RCTs to
effectiveness” (Cartwright, 2011). Medicine seeks to predict in
order to intervene by means of treatments, and behavioural genetics
applied to social sciences seeks to predict in order to intervene too.
But then, it is necessary that the sort of prediction reached is not of
the kind “it works somewhere,” but rather of the kind “it will work
for us” (Cartwright, 2011). This requires that the treatment reliably
promotes the outcome, and this demands a capacity claim (magnets
power to attract metals, for instance, grounds the step from “it will
attract some metal somewhere” to “it will attract some metal for us”).
Capacities thus allows for extrapolation of the knowledge provided
by RCTs insofar as they offer the grounding or explanation for
the association reached by the RCTs (Cartwright, 2009).

Dispositions have some characteristics that make them suitable
for their application in genetics. (a) Given their dispositional
nature, powers might not be manifested if the triggering condi-
tions do not occur. This feature allows for a sort of modality
that matches very well with claims in genetics, because genes
sometimes predispose for something, but do not necessitate it.
(b) Triggering conditions make a power manifest and it is then
when causation occurs; causation is thus conceived as a process
rather than as a relation. Analogously, genes are causes only
insofar as genetic expression is triggered. (c) Most powers
need mutual manifestation powers, that is, powers that need to
be met in order for them to manifest, so that causation occurs
as a consequence of the joint manifestation of such powers.
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This characteristic accounts for phenomena such as polygeny or,
in the case of behaviour genetics, heterogeneity across environ-
ments. (d) There are interfering and preventing powers, so that
a power makes the effect occur differently by influencing the tim-
ing, chance, or extent to which the effect occurs (interfering pow-
ers) or prevents the effect (preventing powers). Gene silencing
and mutation are paradigmatic examples in this case, and many
epigenetic phenomena (histone modification and cytosine meth-
ylation) instantiate interfering powers that determine in some way
gene effects. Demographic composition and environmental con-
text are typical examples of this feature in the case of behaviour
genetics. These four features account for the complexity of causa-
tion that is so pervasive in genetics. A nice illustration of some of
these features is implicit in M&H’s example of causal depth in
cystic fibrosis, which presents shallow features (see endnote 6).

M&H characterize shallow causes as non-unitary (complex
causality), non-uniform (heterogeneity of effects), and non-
explanatory (cause and effect are associated without explaining
why and how the effect takes place). It is quite immediate the
way in which the dispositional framework captures the non-
unitary and non-uniform character of shallow causes: Most dispo-
sitions manifest jointly and interfering and preventing powers
account for heterogeneity of effects in different contexts.
Crucially, however, powers are explanatory. It is because genes
are powers that they produce the effects they do when triggering
conditions occur. The picture is then one in which different pow-
ers (different genes, other biological components, environmental
and cultural factors) contribute to different extent and in various
ways to the effect, accounting in this way for the shallowness
observed in genetic causes, but insofar as they are explanatory,
powers offer a suitable road from shallowness to effective or
real causation. Powers offer the way to go from whether and
how often something happens to why and how something might
or might not happen (Rocca & Anjum, 2020). Or, in other
words, “there are causes out because there are causes in.”
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Abstract

Any empirical claim about the role of genes in socioeconomic
outcomes involves successfully addressing the identification
problem. This commentary argues that socioeconomic outcomes
such as education are sufficiently complex, involving so many
mechanisms, that understanding the role genes requires the
use of formal theoretical structures.

Madole & Harden (M&H) provide an interesting and
wide-ranging argument on the senses in which genetically
informed studies may be said to produce causal inference. We
focus on their discussion of genome-wide association studies
(GWASs) of educational attainment (EA). The authors summa-
rize this evidence as:

Genes might cause EA in the sense that genes made some distal difference
in level of attainment, but not in the sense that they provide an explana-
tion for how this difference was made.

The paper’s claims amount to arguing that (1) GWAS type studies
produce shallow causal evidence and (2) such evidence can help
direct research that seeks mechanisms, that is, explanations. Our
argument is that both objectives need theory to be successfully
met.

From the perspective of statistical/econometric theory, EA
is an example of an outcome determined via a system of interac-
tions, that is, it is a dependent variable in a simultaneous equa-
tions system. This is evident from the basic logic of economic
models of EA. Suppose that individuals come in types Ti deter-
mined by genotype gi, an unobservable ηi capturing in utero
effects, and so on. Suppose that individuals experience family
influences Fi, social influences Si, which are determined by one
another, the types and associated unobservables νi and ξi.
Together, background factors obey a simultaneous system:

Ti = a(gi, hi) (1)

Fi = b(Ti, Si, ni) (2)

Si = c(Ti, Fi, ji) (3)

Suppose, in turn, that type, family, and social factors combine
with unobservables δi to produce choices Ci (e.g., effort)

Ci = d(Ti, Fi, Si, gi) (4)
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and that EAi is determined by background factors, choices, and
unobservables ψi

EAi = e(Ti, Fi, Si, Ci, ci) (5)

M&H argue for the informational value of the conditional prob-
ability of EA given genotype:

Pr (EAi|gi) (6)

Variation in (6) for different gi value demonstrates, in the authors’
sense, a causal relationship between genes and education.

We focus, instead, on what is learned about (1)–(5) from (6).
From the perspective of economic theory, (1)–(5) is a simultane-
ous equations system, while (6) is a reduced form quantity
that summarizes aspects of the data. The classic identification
problem of simultaneous equations systems asks what features
of the structural relations (1)–(5) are revealed by reduced form
evidence such as (6). The simultaneous equations perspective,
as has been long understood, reveals the need for a priori
assumptions to make credible empirical claims about structural
relationships from reduced form ones. How does that logic
apply to EA?

First, the determination of mechanisms that produce EA
requires a priori assumptions on the structure producing between
the joint density of all observables. Examples of such assumptions
include exclusion restrictions that represent ways to delimit the
paths that link different endogenous and predetermined variables.
This is the first sense in which social science theory is needed:
Deep causal claims require credible a priori assumptions and eco-
nomic theory provides precisely that. Any search for explanations
needs to be theoretically informed.

Second, claims that (6) reveals statistical causality implicitly
depend on the structure (1)–(5) that produces (2). M&H draw
analogies between randomized controlled trials and genomic
analyses, arguing that the genetic lottery acts as a randomization
device. But the information involved in (6) does not translate into
interpretable objects of any type unless one has made background
assumptions about (1)–(5). Conditions for causal inference, such
as the single unit value treatment assumption and strong ignora-
bility are statements about the properties of a system. Randomized
controlled trials, for example, succeed because the assignment
mechanism rules out certain pathways linking a treatment to
outcomes.

The necessity of theory is illustrated by comparing GWAS
evidence on EA with the M&H example on the causal effect of
lithium on depression. They defend empirical claims of causal
links between lithium and reduced depression even though
the biological pathway from lithium to mental state is not
understood. We see essential differences with EA. The lithium
evidence is compelling, despite the absence of clear biological
pathways, because the randomization can balance family and
social factors.

In contrast, computation of polygenic scores for EA do not
allow one to conclude that changing the polygenic score of a
given person, would (in the probabilistic sense of (6)) change
their distribution of EA, unless, one has taken a stance on family
and social factor processes in (1) that are induced by genotypes.
As often noted, genomic correlations with EA could reflect
discrimination as opposed to some intrinsic academic ability.
Without a theory of these pathways, we do not see how (6)
answers substantive questions.

M&H may answer that we are eliding the shallow statistical
causality concept with the deeper explanation-based causality
concept that they acknowledge is not revealed by (6). We see
the issues differently: While the lithium experiments produced
useful knowledge in the sense of Marschak (1953) we do not
see the same applying to EA. First, while the lithium studies
were policy-relevant, that is, led to recommendations on treat-
ment, the same is not true for (6). We see no way of mapping
(6), in isolation, to any policy implications if one wishes to rectify
inequalities, promote fair equality of opportunity, and so on,
without knowledge of mechanisms. The same claim with
respect to whether (6) can lead to useful knowledge about
mechanisms per se – this is the classic failure of identification
in simultaneous equations systems without a priori assumptions.
An individual’s genotype, as it is associated with different
family and social pathways, does not admit a reduction of the
set of potential mechanisms determining EA, let alone their
magnitudes, based on (6) alone. While we are inexpert in how
heterogeneity in lithium effects facilitated the search for biological
pathways, we suspect that prior biological knowledge was required
to do this.

We applaud M&H for beginning the process of integrating
genomic research with the existing literatures in statistics and
econometrics. We endorse their call to use statistical causal find-
ings on genotypes to help guide the search for explanations.
Where we differ is that we believe social science areas such as
education require social science behavioral models. Genomic
data may help with the identification, as it provides observables
that help reveal unobserved individual types (in the sense of
Eq. (1)), but it cannot succeed alone.
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Abstract

Behavioral genetics typically finds that the so-called shared envi-
ronment contributes little or nothing to explaining within-pop-
ulation variation on most traits. If true, this has important
implications for where not to look for good targets of interven-
tions: Namely all things that are within the normal range of var-
iation from one rearing environment to the next in that
population.

If a socially valued trait was found to be “hardwired” and immu-
table, this would imply that all individual differences on it are
because of the inherent superiority of some over others, and
that all efforts toward improvement or equality would be futile.
We applaud Madole & Harden’s attempt to correct the wide-
spread misunderstanding that several findings of such genetic
determinism have already been made, and their clarification that
even if genes have causal effects on phenotypes, these effects are
typically probabilistic and context dependent with multiple mediat-
ing processes. Behavioral genetics is presented as a boon, rather
than impediment, to social reform and progression, as it can
help identify these mediating processes between genotypes and
phenotypes so that we may intervene for the greater common good.

Relevant to this, here we direct attention to the number nine
finding by Plomin, DeFries, Knopik, and Neiderhiser (2016),
namely that most phenotypes are not influenced much by the
so-called shared environment. This finding is quite helpful
when searching for targets of interventions, but also a bit discour-
aging: It tells us where not to look. Specifically, it tells us not to
look in most of the places people are currently looking. The
shared environment represents all things except genes that
cause pairs of relatives to become more similar to each other. It
thus encompasses not just variation in the family environments
where children grow up (parenting, nutrition, etc.), but also all
variation between families in broader geographical, economic,
and cultural settings. If no variance is explained by the shared
environment, this either means that it makes no difference to
the relevant phenotype, or that these environmental effects are
so unpredictable that they are uncorrelated even between close rel-
atives. Either way, they are bad targets for interventions.

Intelligence, mental health, and personality are among the
many important phenotypes largely unaffected by the shared
environment, and so are sociopolitical traits such as social dom-
inance orientation (SDO; Kleppestø et al., 2019) and justice
sensitivity (Eftedal et al., 2022). Notable exceptions include
educational attainment, and political conservatism (Willoughby
et al., 2021) and authoritarianism (Eftedal et al., 2020), which
often have shared-environmental variance components of at
least 20%.

A lack of shared-environmental influences on a trait does not
mean that it is necessarily “hardwired” or immutable (e.g., mean
IQ has been rising in recent decades). But it does imply that an
environmental intervention must be well outside of the normal
range of variation to work. For example, if you hope to increase
intelligence by encouraging children to read and learn, you
would need to provide more than what some parents already
give: If it is true that the large amount of variation that exists
on parenting, or social expectations, or number of books on the
shelf, explains little or no variation in a trait, why, then, should
such things suddenly make a difference if we intervene on
them? Interventions that only represent nudges on factors that

already vary substantially across contexts within a relevant sample
are unpromising, regardless of which part of the causal chain from
genotype to phenotype they purport to address.

A critical caveat to the conclusion that the shared environment
has little influence, however, is the fact that this general pattern of
findings primarily stems from samples confined to single cultures,
typically white, educated, industrialized, rich, and democratic
(WEIRD) ones, at one single point in time. That is, behavioral
genetic studies can only conclude that there is no effect of the
shared environment within their samples, but these samples mostly
fail to measure the substantial variation in environments that we
see across human cultures and ecologies in both space and time.
For example, while attitudes toward group hegemony, as reflected
in SDO, are unaffected by shared-environmental variation within
a sample of Norwegian middle-aged twins (Kleppestø et al.,
2019), there is nevertheless substantial variation across nations
and states of the United States in the SDO levels of members of
dominant societal groups, which correlate with ecological levels
of macrostructural inequality (Kunst, Fischer, Sidanius, &
Thomsen, 2017). And when looking across time within cultures
or countries, the increases we have seen in IQ over recent decades,
for instance, are far larger than what genetic shifts alone can plau-
sibly account for (Flynn, 2009). Ever more large-scale social psy-
chological studies continue to pinpoint the ecological correlates
of psychological phenomena such as these.

A lesson from behavioral genetics to those looking for effective
societal interventions on shared-environmental variables is then
to broaden one’s horizon, and look at the things that vary across
cultural ecologies, rather than the things that vary within them.
The shared-environmental differences that actually seem to
make a difference are those we see between, for example,
Boston and Mumbai, or between 2022 and 1942, rather than
those we see between the Smiths from west of town and the
Harpers in the east. Behavioral genetics should broaden its empir-
ical scope beyond single-culture WEIRD samples to adequately
identify critical effects of the shared environment and thus poten-
tial societal targets of environmental intervention.

When such data collection is not feasible, investigating the
unique environment of individuals, containing everything that
makes relatives differ, also offers lessons for behavioral science.
While this unique variance component appears to include mostly
idiosyncratic and unsystematic influences (Turkheimer, 2000),
there are still important things to learn from looking at how
non-shared-environmental versus genetic variance components
from different phenotypes are correlated. And as Franić et al.
(2013) describe, such correlations provide more stringent tests
of latent psychological constructs than do regular factor analyses.
These techniques revealed, for example, that sensitivities to being
the perpetrator, victim, beneficiary, and observer of injustice are
undergirded by separate and heritable latent motivations to be
morally principled and opportunistic (so that the worse one reacts
to injustice to oneself, the less one reacts to injustice to others).
Furthermore, the unique environments that increase moral
opportunism tend to also increase SDO, while genetic substrates
that increase moral opportunism also increase SDO and lower
altruism and generalized trust (Eftedal et al., 2022).

As non-shared-environmental correlations control for genetic
and shared-environmental confounders, they can also help nar-
row our search for pairs of variables that are connected causally.
For instance, individual educational attainment is associated with
lower authoritarianism even when controlling for genetic and
shared-environmental confounding (Eftedal et al., 2020). Surely
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such knowledge about the underlying nature of latent psycholog-
ical constructs and their potential causal connections are useful
stepping stones in the search for good interventions.
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Abstract

Madole & Harden describe how genetics can be used in a causal
framework. We agree with many of their opinions but argue that
comparing within-family designs to experiments is unnecessary
and that the proposed influence of genetics on behavior can be
better described as inus conditions.

Madole & Harden (M&H) describe how genetics can be used in
a causal framework. We agree with the authors that viewing
genetic causality as probabilistic, instead of deterministic, is a
fruitful way to view the effects of genetics on behavior.
Moreover, we agree that using within-family designs will
strengthen our understanding of the causal effects of genetics
on development (Hart, Taylor, & Schatschneider, 2013; van
Dijk, Norris, & Hart, in press). However, there are two points
we wish to discuss from Madole & Harden (M&H). First, we
believe we do not need to equate within-family designs to exper-
iments, including randomized control trials (RCTs) and natural
experiments. Second, we believe that the effects of genetics on
behavior are better described as what they are, inus conditions,
rather than describing what they are not, non-uniform, non-
unitary, and non-explanatory.

Philosophers have been debating the meaning of causality for
centuries, including John Stewart Mill, who formalized three
conditions for establishing causality. First, the cause must pre-
cede the effect, second, the cause must be related to the effect,
and third, we can find no plausible explanation for the effect
other than the cause (see Shadish, Cook, & Campbell, 2002).
The first two conditions are easily established by many designs.
The third condition is the hardest to meet. Experiments, defined
by the use of random assignment with a manipulation, are com-
mon and powerful tools we use to meet the third condition, as
they allow us to rule out other plausible explanations. However,
ultimately causality is determined by meeting those three condi-
tions, whether you have experimentation or not. M&H suggest
that genetic transmission from parent to child can be interpreted
the same as an average treatment effect from an RCT. We agree
that a within-family design and an RCT carry a lot of strong
causal information, but we disagree with describing the two
designs as similar. Within-family designs are different than
RCTs in an important way. An RCT is a specific type of exper-
iment that introduces a manipulable cause to examine whether
that cause increases or decreases a given behavior. Within-family
designs investigate non-manipulable causes to examine whether
genetic influences have effects on variability across the range of
behaviors. We believe there is no need to make the comparison
between within-family designs and RCTs as on their own
within-family designs do meet the conditions laid out by John
Stewart Mill for causal conclusions. We also believe that we
do not need to equate within-family designs to natural experi-
ments, which is often done, as natural experiments also have a
manipulation. By forcing the language of experiments, no matter
the type, on within-family designs, we leave ourselves open to
criticisms that within-family designs do not have a manipulation
and therefore can never establish causality. However, establishing
causality does not need an experimental manipulation, and as a
field we do not need to borrow the language of experimental
designs, whether it is a natural experiment or RCTs, to show
that our results can still inform us about causality. With a
within-family design that is estimating the genetic transmission
from parent to child, if the assumption of the equal environ-
ments is met, there are no other plausible genetic or environ-
mental explanations for the effects of the specific genes on
behavior. We can instead use the language of what we do
have, which is a unique design with no formal name that we
know of, which has randomization of genes because of miosis
and non-manipulated causes, and looks at the impact of
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variation, as opposed to mean differences. We believe this
unique and powerful design can meet John Stewart Mill’s
three conditions for establishing causality.

Second, M&H assert that genetic effects should most likely be
viewed as non-uniform, non-unitary, and non-explanatory. We
agree with this position. It is highly likely that most of the
effects of genes on behavior are not causally deterministic but
instead only impact the chances of a behavior occurring.
However, this position describes these effects in terms of what
they are not. The reason that these effects may be non-uniform,
non-unitary, and non-explanatory is because they most likely
operate as inus conditions (Mackie, 1974; Shadish et al.,
2002). Inus stands for an insufficient but nonredundant part
of an unnecessary but sufficient condition. Insufficient means
that the existence of this factor by itself is not enough to
cause the effect. Nonredundant means that in the constellation
of factors that come together to produce an effect, a particular
factor provides something unique that the other factors do
not. Unnecessary means that the effect could be produced by
other factors even in the absence of a particular factor.
Sufficient means that in concert with other factors, it is
enough to produce an effect. For example, having a particular
polymorphism alone is insufficient to produce a particular
behavior. Every behavior, for example, needs an environment
that is capable of allowing that effect. It is nonredundant in
that a particular polymorphism is unique within a person.
It is unnecessary in that the behavior could be observed
without the polymorphism, but it is sufficient in that in combi-
nation with a constellation of other factors it either promotes or
inhibits a behavior. It is because of these conditions that
the effects of genes may be non-uniform, non-unitary, and
non-explanatory. Most behaviors of interest to scientists fall
under the category of inus conditions because most behaviors
that we study have multiple causes in the sense that there are
many factors that either promote or inhibit a behavior. It is
likely that genetic effects operate on behaviors in the same
way.

We applaud M&H for reminding us that within-family
designs can inform causality and extending this discussion by
laying out how genetic influences might operate within a causal
framework. We believe our commentary will help sharpen the
concepts and language around this causal framework.
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Abstract

In our commentary we ask whether we should ultimately
endeavour to find the deep causes of behaviours? Then we dis-
cuss two extensions of the proposed framework: (1) Mendelian
randomisation and (2) hypothesis-free gene–environment inter-
action (leveraging heterogeneity in genetic associations). These
complementary methods help move us towards second-genera-
tion causal knowledge, ultimately understanding mechanistic
pathways and identifying more effective intervention targets.

Reactions to genetic causes often take one of two extremes: either
genetic causes are aversive, or they are deterministic and put upon
a pedestal. We believe that Madole & Harden’s (M&H’s) frame-
work and reasoned argument could help to moderate these com-
mon reactions. Genetic variants are not uniquely powerful, nor
uniquely flawed. The way M&H draw parallels with established
social science methods helps to make this point.

We agree with M&H that the mechanism behind a cause can
act through a complex network of biological, social, and psycho-
logical pathways. For most behavioural traits it is difficult to dis-
entangle the purely biological from the complex interactions
between those biological manifestations and environments,
which in turn can feed into the causal mechanistic process.
Hence, the authors define these traits as having “shallow” causes
– which are non-unitary, non-uniform, and non-explanatory. We
question whether this is a property of their nature, or rather a
limit of our understanding. While we cannot currently fine-map
every genetic locus and build a mechanistic model of how each
genetic variant acts within a causal network, we shouldn’t under-
estimate the potential for scientific advance. Do the authors think
there is potential for genetic causes of complex traits to move
from shallow to deep as our understanding improves?

Some traits have genetic causes which are clearly deep, for
example, phenylketonuria or cystic fibrosis. Their causative
genetic variants explain both mechanism and treatment.
However, single-genetic variants with large explanatory effects
are rare. Complex traits are usually highly polygenic, with each
genetic variant exerting only a small effect. Consequently, M&H
suggest that their causes are shallow. But occasionally these single
variants can produce deep mechanistic insights, even within a
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complex causal network. For example, a novel genetic variant for
Crohn’s disease implicated autophagy as a mechanism (Rioux
et al., 2007), and individual genetic variants implicated metabolic
functions in the development of anorexia nervosa (Watson et al.,
2019). Consequently, novel mechanistic insight can come before
we have identifed most of the components in a complex causal
network. Therefore, we see the line between shallow and deep
to change over time as our knowledge advances, rather than as
an inherent property of a complex behavioural trait.

In addition, we propose extending the applications of this causal
framework to Mendelian randomisation. If we accept the premise
that a genetic variant could be causal for trait A then a natural
extension is to test whether trait A causes trait B. Let us take
M&H’s example: Does education (trait A) reduce crime rates
(trait B)? One alternative to a randomised education intervention
would be Mendelian randomisation, using genetic variants as a
proxy for levels of education. The Mendelian randomisation
method operates under similar assumptions (and similar limita-
tions) to those laid out in section 3.2 of M&H, following the prin-
ciple of “genetic inheritance as a natural experiment” (Davey Smith
& Hemani, 2014). Mendelian randomisation studies (given their
speed and relative low cost) are often posited to be a useful first
step to guide future randomisation/intervention studies.

Mendelian randomisation estimates are average causal effects
and consequently only constitute first-generation causal knowl-
edge. But extensions of the method can help us towards
second-generation causal knowledge. For example, multivariable
Mendelian randomisation tests possible mediation pathways
(Sanderson, Davey Smith, Windmeijer, & Bowden, 2019) and
factorial Mendelian randomisation tests interaction effects
(Rees, Foley, & Burgess, 2020). However, these methods can
only test possible mediator/moderator variables from genome-
wide association studies (GWASs). To obtain sufficient sample
sizes for GWASs, the quality of phenotyping is often poor. This
currently limits our ability to move beyond shallow causes using
Mendelian randomisation methods alone. We must triangulate
Mendelian randomisation results with other study designs
(Lawlor, Tilling, & Davey Smith, 2016), which can serve two pur-
poses to help us towards second-generation causal knowledge: (1)
replication in another sample/context can help us to understand
the durability and consistency of the causal effect, and (2)
exploring sources of heterogeneity can improve our understand-
ing of the causal pathway, beyond limited GWAS phenotypes.

M&H also highlight heterogeneity in their framework. They
discuss how investigating individual differences in treatment
response (i.e., effect heterogeneity) can indicate that the causal
relationship is dependent on other factors (moderators). If we
can identify these moderators, it can inform us about modifiable
intervention targets because it deepens our understanding of the
causal mechanism. We strongly support this point, and further
argue that the same is true for genetic associations:
Understanding heterogeneity here can help to identify modifiable
targets in the pathway between genes and behaviour that could
inform behavioural (or pharmacological) interventions to draw
out genetic strengths and mitigate genetic risks. We wish to high-
light this as a crucial future direction for the field, which could be
conceptualised as hypothesis-free gene–environment interaction
(or indeed gene–gene interaction, but we focus our discussion
on environments). Most gene–environment interaction studies
focus on a specific environmental variable with a plausible mech-
anism because this is one way to protect against false positives
(Moffitt, Caspi, & Rutter, 2005). But with the increasing

availability of large sample sizes and more robust statistical meth-
ods we could use the heterogeneity in genetic association as a
method for identifying relevant (environmental) moderators.
One way to do this is to explore why some people are resilient
to genetic risk, that is, they have high genetic risk for an outcome
but have not yet developed that outcome, akin to the wealth of
research exploring protective factors (Armitage et al., 2021).

These two suggested extensions of the causal framework are
complementary and could be used straight away with available
data and appropriate statistical care, to highlight potential modify-
ing exposures for follow-up, either for more deep phenotyping or
to include in intervention studies. Both extensions have the poten-
tial to move us closer to second-generation causal knowledge. We
believe the field should aspire to this, as well as to moving from
shallow to deep causes by pursuing mechanistic information. We
commend the framework proposed by M&H for providing the
foundation to push the field to pursue these ambitious aims.
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Abstract

Madole & Harden argue that just as the results of randomized
controlled trials (RCTs) represent gains in causal knowledge
and are useful, despite their limitations, so too are the findings
of human behavior genetics. We argue that this analogy is mis-
leading. Unlike RCTs, the results of human behavior genetics
research cannot suggest efficacious interventions, nor point
toward future research.

Madole & Harden (M&H) draw a comparison between the results
of randomized controlled trials (RCTs) and finding of behavior
genetics; just as RCTs give us “causal knowledge,” they argue,
so too does behavior genetics. The causes identified in both
cases, they argue, are shallow causes – they are “non-uniform,”
“non-unitary,” and “non-explanatory,” but they are causes none-
theless (target article). And, they argue, just as in the case of
RCTs, the “shallow” results can be leveraged into research leading
to the establishment of “second-generation causal knowledge,” by
identifying “processes and contexts through which the effect
emerges” (target article, sect. 2.4, para. 5). We disagree and
argue that the comparison to RCTs is misleading for both first-
and second-generation causal analysis. The “shallowness” of the
causal knowledge gained in RCTs does not prevent them from
being useful guides to practice; this is not the case with the asso-
ciations found in behavior genetics.

The point of RCTs, in general, is to find actionable interven-
tions. Although these interventions rely on “shallow” causal
knowledge, and so cannot be expected to port reliably between
different populations and environments, they can be expected
to be effective in populations and environments similar to those
in the RCT. When we, for example, change our prescribing prac-
tices based on the results of an RCT, we expect that the drug we
are now prescribing will, on average, yield better results, assuming
that the population is relevantly similar to that used by the RCT.
Or, to take M&H’s example, if we decided to promote early child-
hood education as a means of improving socially desirable out-
comes, the RCT would give us a reason to expect those
improvements, ceteris paribus. These actionable interventions
represent “first-generation” causal knowledge, according to
M&H, and can later potentially provide an entry into mechanistic
understandings of causation and explanation, so called
“second-generation” causal knowledge.

The situation in behavior genetics is nothing like this. Unlike in
the case of RCTs, we cannot change the genetic variants associated
with the phenotypic variation – and even if we could, doing so
would be wildly irresponsible. A reliable finding that a particular
childhood intervention has downstream effects that are significant
both statistically and “clinically” (or socially, etc.) suggests a reason-
able course of action, even if the relationship between the interven-
tion and the outcome is shallow (non-unitary, non-uniform,
non-explanatory). But what would we gain from even an accurate
finding that a particular genetic variant was associated with down-
stream effects? If such knowledge was not “shallow,” we might be
able to use information gleaned from such genetic associations to
intervene environmentally – but the very nature of the shallowness
of the relationship prevents our being able to make those kinds of
interventions; we cannot change the genes, and gain no informa-
tion useful for making environmental interventions that could
not be equally or better gained from straightforward analyses of
the effects of intervention on the traits themselves.

The “shallowness” of behavior genetics findings is generally
more problematic than that typically encountered for RCTs. In
behavior genetics, the associations between particular loci and
behavioral traits are almost absurdly small, and the only reason
that they rise to statistical significance at all is that genome-wide
association studies (GWASs) can leverage sample sizes in the hun-
dreds of thousands or millions. Even when accumulated across
thousands of loci in polygenic scores, the application of polygenic
scores is plagued by problems with portability because of effects
of both real biological complexity and methodological artifacts
(Kaplan & Fullerton, 2022; Matthews, 2022). These issues, in
addition to the generally low predictive power, render polygenic
scores of little to no use at the individual level (Fusar-Poli,
Rutten, van Os, Aguglia, & Guloksuz, 2022; Morris, Davies, &
Smith, 2020) and a large amount of uncertainty of estimates
appears to hinder the ability to even accurately and consistently
stratify individuals into high-risk groups (Ding et al., 2022;
Muslimova et al., 2023; Schultz et al., 2022).

Put bluntly, knowing that one drug is, say, 20% more effective
than another is actionable; knowing that one allele is associated
with a tiny fraction of a percent of the variance in the trait in
that population is far less so. Finding associations with a small
amount of variance is not necessarily useless; disease GWASs
have sometimes highlighted promising mechanisms or pathways
even from single-nucleotide polymorphisms (SNPs) with small
effects; however, sociobehavioral GWASs have not provided any
such specific and discrete pathways. Adding together many such
alleles yield no more actionable information than any one of
them. Indeed, this points toward another weakness of M&H –
it elides the distinction between the results of GWASs and herita-
bility estimates from classic “twin” studies. The former point
toward loci that at least in principle might be useful for moving
from “shallow” to “second-generation” causal analyses (though
the tiny effect sizes make the value of this questionable). The latter
point toward nothing actionable at all. While accumulating small
effects into polygenic scores has increased values of R2, there has
been little elaboration of this kind of mechanistic knowledge
revealed by functional enrichment or genetic correlations. This
does not mean that such studies are necessarily useless – just
that they do not produce the kinds of causal information about
the influence of genes on behavior that anything useful can be
done with (Kaplan & Turkheimer, 2021; Turkheimer, 2016).

There are a number of other important disanalogies that one
might point toward. The controlled aspect of RCTs makes “red
hair” effects (Jencks, 1972) much less likely (though not impossi-
ble). The randomizing element of RCTs avoids the problems
that GWASs have with cryptic population structure. More gener-
ally, RCTs, by their nature, avoid many problems with the inter-
vention of interest covarying systemically with the environment
experienced – problems that plague both heritability estimates
and GWASs.

In the end, the comparison between the causal information
gleaned from RCTs and the results of behavior genetics highlights
the weaknesses of the latter, and reveals that they share more in
common with observational studies, including their weaknesses.
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Abstract

We are less optimistic than Madole & Harden that family-based
genome-wide association studies (GWASs) will lead to signifi-
cant second-generation causal knowledge. Despite bearing
some similarities, family-based GWASs and randomised con-
trolled trials (RCTs) are not identical. Most RCTs assess a rela-
tively homogenous causal stimulus as a treatment, whereas
GWASs assess highly heterogeneous causal stimuli. Thus,
GWAS results will not translate so easily into second-generation
causal knowledge.

We agree that family-based genome-wide association studies
(GWASs) are an improvement on traditional GWASs in their

ability to rule out confounding common causes. We are, however,
sceptical that family-based GWASs will guide research aimed at
identifying interventions on non-genetic second-generation vari-
ables that can be put to practical use in a manner akin to rando-
mised controlled trials (RCTs). Our scepticism stems from an
overlooked disanalogy between family-based GWASs and RCTs
– the heterogeneity of the causal stimulus – and its impact on
non-uniformity.

In most RCTs, individuals in the treatment group receive the
same, or as similar as possible, treatment or causal stimulus,
such as a drug or educational intervention (causal stimulus homo-
geneity). The same is true of Mendelian randomisation trials
(which perhaps inspired Madole & Harden’s [M&H’s] argu-
ments) – the causal variable(s) being investigated are relatively
homogenous exposures. In contrast, family-based GWASs make
claims about the average treatment effects of thousands of genetic
variations distributed across a population. This aggregation is
assigned a single variable, “genes,” which can be demonstrated
as causal to an outcome to some degree, but nonetheless shows
high causal stimulus heterogeneity.

Causal stimulus heterogeneity differs from the heterogeneity of
treatment effects – a feature of both RCTs and GWASs – which
M&H discuss in the article. The heterogeneity of treatment effects
concerns the non-uniform effects of causal stimuli because of
interactions with background factors like physiology and environ-
ment. This type of non-uniformity is seen in both GWAS and
RCT studies, but is particularly challenging for GWASs because
of causal stimulus heterogeneity. In GWASs, the complex role
of the environment in the expression of the phenotype is ampli-
fied because the causal stimulus is varied and heterogeneous
between individuals (Lynch, 2021). This non-uniformity means
that the associations GWASs uncover between phenotypes and
large aggregates of gene variants are very difficult to connect to
mechanisms and function (Matthews & Turkheimer, 2022). A
similar challenge occurs in microbiome research: Significant
within-population physiological and environmental variations
make it difficult to track pathways between microbes and out-
comes, limiting the scope for causal inference (Lynch, Parke, &
O’Malley, 2019).

Causal stimulus heterogeneity increases non-uniformity and
hampers tracing of mechanisms. This is because of variation in
nature of “the same” treatment upon subjects. A simple hypothet-
ical illustrates this well. Consider three different drug treatments:
First, a drug with a single active ingredient (e.g., lithium). Second,
a drug with thousands of ingredients of small efficacy. Third, a
drug with thousands of ingredients of small efficacy, where each
pill has one ingredient or an alternative at random according to
a defined chance procedure. In all three cases, an RCT can deter-
mine whether the treatment drug has an average effect compared
to a control, and thereby generate first-generation causal knowl-
edge. This is possible even in the face of non-uniformity because
of the heterogeneity of treatment effects. The prospect for these
results to advance second-generation causal knowledge dimin-
ishes, however, across the three cases. The high causal stimulus
heterogeneity in the third case is likely to produce non-uniform
causal pathways from the very first steps, thus making it difficult
or impossible to trace mechanisms from particular drug ingredi-
ents given only associations between treatments and outcomes.

A high degree of causal stimulus heterogeneity is typical for
GWASs, including family-based ones. To analogise with our
hypothetical drug case: The first drug is akin to a single-gene
cause, the second a specific aggregate of genes, and the third an
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aggregate of many genes, which at the individual level is summa-
rised by a polygenic risk score. Polygenic risk scores are highly
heterogeneous causal stimuli with non-uniform effects that
make it extremely difficult to trace mechanisms from particular
genetic ingredients in the causal stimulus, in all but the simplest
cases of gene expression (where GWASs are unnecessary). Even if
we could hold environments fixed between individuals (thereby
reducing the potential for non-uniformity because of background
conditions), in GWASs there is typically too much variation
between individuals in how the causal stimulus works at the
“lower” biological level for effective “bottom-up” investigations
of intermediate causes through biological mechanisms. In our
view, this largely precludes these studies from providing the sort
of causal knowledge required to identify mechanisms and inter-
mediaries for investigation with second-generation studies.

A work-around might be Harden’s proposal of phenotypic
annotation, which rests on the statistical investigation of interme-
diate causes through mediation analysis (Belsky & Harden, 2019;
see, e.g., Belsky et al. [2016]). Mediation analysis test variables
correlated with the stimulus to determine whether (and to what
extent) they mediate the causal paths from stimulus to outcome.
Such intermediaries could be possible targets for intervention in
second-generation studies. In the simplest case, the genetic stim-
ulus would act as an instrumental variable on the potential inter-
mediary (as in Mendelian randomisation, see Davey Smith &
Ebrahim, 2003) allowing for measurement of the intermediary’s
causal effect. However, mediation analysis is tricky at the best of
times (see Pearl [2014] for a principled approach). The possibility
of confounding common causes between intermediary and out-
come is a serious challenge. Common causes (such as other
genetic or environmental causes) may account for the relationship
between potential intermediary and outcome. In this case, inter-
vening on the potential intermediary will not cause the outcome.
A heterogeneous causal stimulus, such as a polygenic risk score,
effectively carries a potential common cause within itself: The dif-
ferent ways that the causal stimulus may be realised. The use of an
average causal stimulus (by definition) precludes control of this
common cause. To determine if a potential intermediary is indeed
a cause of the outcome, one would need to do an RCT or another
kind of study.

In conclusion, we agree that family-based GWASs provides
one kind of causal information that has been missing from tradi-
tional heritability and GWASs (see Lynch [2017] for the limita-
tions of causal heritability claims). Unfortunately, the general
heterogeneous nature of the genetic variation studied means
that this information will not translate easily into second-
generation causal knowledge.
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Abstract

Counterfactual causal interpretations of family genetic effects are
appropriate, but neglect an important feature: Provision of
unique information about expected outcomes following an inde-
pendent decision, such as a decision to intervene. Counterfactual
causality criteria are unlikely to resolve controversies about
behavioral genetic findings; such controversies are likely to con-
tinue until counterfactual inferences are translated into interven-
tional hypotheses and designs.

Madole & Harden (M&H) compellingly argue that estimated
within-family genetic effects can be interpreted as causes in
much the same way as randomized controlled trials. Increased
focus on within-family molecular genetic designs is needed for
many reasons, and M&H illustrate the power of such designs in
understanding human neurophysiology and behavior.

Their argument relies on counterfactual accounts of causality,
however. Counterfactual accounts have many strengths, but have
been equally criticized, usually because of their dependence on
states that are by definition impossible to observe (Dawid,
2000). Counterfactual causal accounts attempt to estimate what
would have been the case in a different set of conditions that
did not and cannot eventuate, leaving a user of such models in
a predicament about how to use them: If the causal inference is
about something in the past that did not occur, what about the
present that did occur, and the future?

Traditional causal accounts and many contemporary accounts
(e.g., Granger causality; Dawid, 2015; Granger, 1969; Janzing,
Balduzzi, Grosse-Wentrup, & Schölkopf, 2013; Schreiber, 2000),
address a different, actionable question: To what extent does a
potential cause provide unique information about expected out-
comes following an independent decision, such as a decision to
implement a manipulation or intervention? Designs developed
within these paradigms, such as randomized controlled trials,
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directly address this type of question, in that a decision is ran-
domly made so as to instantiate independence from past states,
and the outcomes of this decision are then observed.

Counterfactual theory suggests that it also provides this
information, by estimating what would have happened if a
decision of sorts by nature had been made, assuming it could
have been made. However, this relies on a number of assumptions
about that alternate possible world that might or might not be
true. In an important sense, moreover, it takes an unactionable
epistemological stance: Even if a counterfactual account informs
about what would have occurred had things been different, it
does not inform about what one can do now, given things as
they are.

This is a critical distinction given the nature of causal pathways
involved in behavior genetics. Usually interest is not actually in
the immediate effects of the genotype per se – the nucleotide
sequences at different loci and their translation – but the affected
neurodevelopmental processes, those effects on neurophysiology
at a later time, and their effects on experience and behavior.
The black box between gene and behavior is in fact the phenom-
enon often most of interest in terms of causal explanation. In the
polygenic risk regime, where each polymorphism might have an
almost unmeasurable unique effect on phenotype, effects of a par-
ticular polymorphism or haplotype may be still further removed
from the aggregate neurodevelopmental endpoint of primary
interest.

There are some ways to construe genetic effects in terms of
decision outcome information. For instance, it might be argued
that genotype provides additional predictive information about
the outcomes of particular decisions for particular individuals –
that is, in deciding what intervention to provide to whom,
above and beyond any nongenetic data. This is a reasonable argu-
ment, but again, with numerous intraindividual and extraindivid-
ual inputs into behavioral development, it may be that
downstream predictors provide more information about behavior,
being causally more proximal mediators of any genetic effects
(Morris, Davies, & Davey Smith, 2020). If a gene is one of
many causes of an easily identifiable condition, to treat the con-
dition isn’t it more efficient to identify those with the condition,
rather than the gene? Moreover, in such a setting the emphasis is
still on how to improve efficacy of an intervention, such as an
educational or medical intervention.

Another way to construe genetic effects in terms of decision
outcome information is in terms of genetic manipulation. Gene
editing is a reality (Anguela & High, 2019; Saha et al., 2021),
and randomized controlled trials of genotype manipulation may
become salient considerations in the neurobehavioral sciences
sooner than is often appreciated. Given developmental cascades
(Elam, Lemery-Chalfant, & Chassin, in press), it is likely that if
genotypes are not altered early in neurodevelopment, in many
cases genetic effects likely will be irreversible. In that case, the
options for intervention are again further downstream from
genes both in time and causal proximity to experience and behav-
ior. Alternatively, one could implement preventative gene editing,
but that would be a form of eugenics with all the attendant ethical
challenges it implies.

M&H’s argument for counterfactual causality is telling in that
it implies behavior genetic designs have so far often not been seen
as causally compelling – otherwise their argument would be
unnecessary. Reluctance to construe behavior genetic effects in
terms of causes has likely been because of numerous factors,
including limitations of common designs, such as lack of precise

genotypic information or lack of within-family controls for vari-
ables varying between families. However, the reluctance also argu-
ably reflects a perception that behavior genetic studies have
generally not provided information about what is changeable or
targetable. Translating behavioral genetic effects into interven-
tional hypotheses and designs, where the information they pro-
vide can be leveraged to prevent and treat, will likely increase
the reception and perceived relevance of such findings.
Sometimes causes have effects that, set into motion in a causal
chain, are impossible to reverse. But the actionable, effective rele-
vance of the causal chain only goes back so far.
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Abstract

Madole & Harden develop some good ideas about how to
understand genetic causality more clearly, but they frame the
benefits of behavior genetics research at a largely collective
level, focused on the pros and cons of different ways to engineer
the gene pool or social behavior. This neglects the individual
benefits of hereditarian insights for mate choice and parenting.

The rise of genome-wide association studies (GWASs) and poly-
genic scores has triggered a new moral panic about behavior
genetics. In their target article, Madole & Harden (M&H) aim
to neutralize some of this panic by clarifying the causal inference
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logic behind GWAS research. They identify some illuminating
similarities between within-family genetic effects (given the sexual
randomization of parental genotypes), and average treatment
effects in randomized controlled trials.

However, their implicit sociopolitical framework risks handi-
capping the utility of behavior genetics for ordinary people.
M&H write as if there are only two main ways that behavior
genetics could influence humanity: collective eugenics (changing
the gene pool through government policy, or through new cul-
tural norms around embryo screening or CRISPR gene editing),
or collective social engineering (using insights into gene–brain–
behavior pathways to identify new biopsychosocial interventions
that can nudge behavior in socially valued directions – such as
reducing violent crime, mental illness, or obesity).

This collectivist viewpoint asks what behavior genetics can do
for society at large – rather than for individuals making decisions
about their own families. For example, M&H seek scientific
insights about how to “identify novel targets for intervention,”
how to “isolate steps in the causal path that serve as candidates
for intervention,” and how to identify “targets for programmatic
manipulation that may serve to close the gap in health
disparities.”

An implicit question behind their paper seems to be: How can
we make sure that behavior genetics findings are used by good lib-
eral policymakers to solve the social problems prioritized by good
liberals – rather than being turned into coercive, racist, neo-Nazi
eugenics? They explicitly wish to “challenge the genetic determin-
ism and essentialism that have historically characterized the per-
nicious misapplications of genetics by political extremists” on the
Right (without mentioning the pernicious misapplications of
Blank Slate social-constructivism by political extremists on the
Left, such as Stalin, Pol Pot, Mao, etc.). Given their aversion to
any kind of organized eugenics, they imply that the only other
benefit of behavior genetics could be to promote
“second-generation causal knowledge” that can make environ-
mental interventions (ranging from new pharmaceuticals to new
educational interventions) more effective in bio-hacking the com-
plex genes-to-behaviors pathways.

Their distinction between “deep causes” and “shallow causes”
exemplifies some hidden problems in their sociopolitical frame-
work. “Deep causes” (with unitary, uniform, causally explanatory
genetic effects) – for example, the way that homozygous muta-
tions in the CFTR gene lead to cystic fibrosis – are seen as the
gold standard. “Shallow causes” (with local, probabilistic, causally
distal genetic effects) are seen as little more than stepping stones
toward further mechanistic biomedical research that can identify
new causal pathways for the collective melioration (or manipula-
tion) of behavior.

The trouble is, the most heritable, stable, predictive, and
important behavioral traits, such as general intelligence, the
Big Five personality traits, and mental disorders, generally
show “shallow” rather than “deep” genetic influences. As
M&H emphasize, these massively polygenic traits are shaped
by thousands of genetic variants that influence intricate neuro-
developmental systems in ways that aren’t very mechanistically
informative about which biomedical or sociocultural interven-
tions might work.

So, shallow genetic influences won’t help the social engineer
very much in finding biopsychosocial interventions to reshape
society. Yet, for an individual making important life-choices

that can shape the next generation of their own family, the mas-
sively polygenic core psychological traits are much easier to influ-
ence and/or much more important to understand than severe
single-gene mutations. When it comes to real-life issues in mating
and parenting, where an accurately hereditarian view could guide
better decision making, and where a Blank Slate view could lead
to high-cost errors and lifelong regrets, “shallow causes” run
pretty deep.

Mate choice has been a form of intuitive eugenics at least 540
million years, ever since the Cambrian explosion, when complex
senses and centralized nervous systems started to guide sexual
selection through mate choice for good genes. People tend to
focus their mate choice on traits that are at least moderately her-
itable, such as physical health, mental health, general intelligence,
personality traits, and moral, political, or religious values (Miller,
2000). Mate choice across millions of animal species exerts a high
degree of “counterfactual control” over what kinds of offspring
get produced, even though animals have no conscious under-
standing of the “counterfactual dependence” whereby genes influ-
ence traits. However, Blank Slate ideologies (Pinker, 2003) have
led many people to mistrust their own mate choice preferences
and hereditarian intuitions, with potentially disastrous results
when choosing a marriage partner, gamete donor, or child to
adopt.

Likewise with parenting. In many countries, Blank Slate ide-
ology leads parents to act as if they can micromanage the out-
come of their kids’ development through intensive hot-house
parenting, overprotective coddling, and tiger-mothering. For
example, in China there has been much debate about “involu-
tion” (内卷), meaning runaway competition in education and
labor markets (Yi et al., 2022). This leads parents to put enor-
mous stress on kids to achieve at any cost – regardless of their
innate abilities, personalities, and interests. The less that parents
believe genes matter, the more frustrated they get by their kids’
mediocrities, and the more they blame themselves for failing to
provide the right shared family environment. A humbler, more
hereditarian perspective allows parents to relax, trust the mate
choices they made, trust their genes, and let their kids follow
their own path, without the burden of trying to optimize the
shared family environment in every possible way (Caplan,
2012).

M&H seem frustrated that they’re stuck at this collective pol-
icymaking level: “Even if we concede that, at a conceptual level,
genes could cause average differences in human behavior, at a
practical level, it is not readily apparent what we would do with
this knowledge.” Maybe the most important thing we can do
with this knowledge, as individuals, is to reject the Blank Slate
dogma and accept the importance of heredity when choosing
our mates, raising our kids, and getting on with our lives.
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Abstract

When building causal knowledge in behavioural genetics, the
natural randomisation of genotypes at conception (approxi-
mately analogous to the artificial randomisation occurring in
randomised controlled trials) facilitates the discovery of genetic
causes. More importantly, the randomisation of genetic material
within families also enables a better identification of (environ-
mental) risk factors and aetiological pathways to diseases and
behaviours.

Madole & Harden draw parallels between randomised controlled
trials (RCTs) and within-family genetic association designs to
elaborate on the notion of genetic causation, that is, whether
genes cause behaviours and how to interpret genetic causes.
The article is a thoughtful introduction to these topics. Our com-
ment focuses on the core feature shared by both designs, that is,
randomisation. First, we discuss how to best capitalise on natural
randomisation to help build causal knowledge. Second, despite
randomisation being a core feature of both, we caution against
drawing too literal parallels between the two designs.

The parallel drawn by the authors was made explicitly by Fisher
who established a direct filiation between the (artificially) rando-
mised design he theorised and the (natural) randomisation of
genetic material at conception, in his words: “the factorial method
of experimentation, now of lively concern so far afield as the
psychologists, or the industrial chemists, derives its structure and
its name, from the simultaneous inheritance of Mendelian
factors.… Genetics is indeed in a peculiarly favoured condition
in that Providence has shielded the geneticist from many of the
difficulties of a reliably controlled comparison. The different
genotypes possible from the same mating have been beautifully

randomised by the meiotic process” (Fisher, 1952). As highlighted
by the authors, this randomisation within families can help to
establish genetic causation. Importantly, genetic causation is
always indirect and happens entirely through (molecular and
environmental) phenotypes. As such, rather than focusing on
genetic causation, perhaps the greatest opportunity for building
causal knowledge in behavioural genetics lies in leveraging the
beautifully randomised process mentioned by Fisher to under-
stand phenotypic causation in general. To that end, a method
called Mendelian randomisation uses genetic variants as instru-
mental variables to assess phenotypic causation and identify
(potentially modifiable) risk factors (Davey Smith & Ebrahim,
2003; Richmond & Davey Smith, 2022; Sanderson et al., 2022).
Many Mendelian randomisation studies have focused on complex
traits, including a within-family Mendelian randomisation study of
the impact of educational attainment on physical health and mor-
tality (Howe et al., 2022b). In addition, the authors rightly state
that identifying a causal genetic variant often does not, per se, pro-
vide insights into causal pathways leading to behaviours. However,
novel methods are rapidly developing that leverage genetic variants
to understand causal pathways and mechanisms underlying com-
plex phenotypes. Many of these methods directly harness the ran-
domisation of genetic material at conception. For example, recent
methods extend Mendelian randomisation to systematically
investigate the aetiological role played by gene expression or
DNA methylation (Hannon et al., 2018; Porcu et al., 2021).
Genetically informed methods for causal inference aiming to iden-
tify (environmental) risk factors and biological pathways have
been reviewed extensively elsewhere (Davey Smith, Richmond, &
Pingault, 2021; Pingault, Richmond, & Davey Smith, 2022).

Critically, the analogy drawn between within-family genetic
association studies and RCTs needs to be used with care. In an
RCT, the treatment should be well defined (e.g., a given dose of
a drug) and can be administered to individuals. By contrast,
generally, a genetic variant cannot be administered or modified
during the life course. Thus, while RCTs can provide actionable
evidence of a specific intervention’s efficacy, a within-family
genetic association only indicates the effect of inheriting one var-
iant or another. The difference in timing is also essential as inher-
iting a genetic variant at conception leads to a lifelong exposure as
opposed to a time-bound treatment.

Furthermore, the authors argue that genetic causes relevant to
behavioural genetics are analogous to causes uncovered by RCTs
in that they are shallow – non-unitary (no single isolable cause),
non-uniform (people exposed have heterogeneous outcomes),
and non-explanatory (not mechanistically informative).
However, this analogy is strained for both monogenic and poly-
genic disorders. A gene implicated in a monogenic disorder
such as cystic fibrosis is close to a well-defined and actionable
treatment: Although the gene is not, in itself, a treatment, it can
potentially be targeted by gene editing techniques such as
CRISPR-Cas9 to correct deleterious variants (note that even for
monogenic disorders, many deleterious variants can be involved
and lead to different phenotypic manifestations) (Jinek et al.,
2012). Successful human clinical trials using gene editing tech-
niques for monogenic disorders are emerging (Frangoul et al.,
2021). Many rare developmental disorders share a similar genetic
architecture, some with relevance to behaviour. For example,
adrenoleucodystrophy is a monogenic developmental disorder,
which may first manifest with behavioural and cognitive difficul-
ties and can be lethal (Zhu et al., 2020). Even for polygenic disor-
ders such as schizophrenia, some rare variants considerably
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increase the risk of disease, with odds ratios up to 50 (Singh et al.,
2022). As such, genetic causes relevant to behavioural genetics
need not be shallow. Variants underlying monogenic disorders
or high-risk rare variants may be better conceived as deep causes,
that is, close to unitary, uniform, and explanatory.

Conversely, polygenic influences of small effects underlying
complex behaviours can indeed be conceived as shallow causes.
However, in this case, the “treatment” is not well defined (in con-
tent or timing), cannot be refined or changed to increase mecha-
nistic insight and is not directly actionable. Even if extensions of
techniques such as CRISPR-Cas9 could theoretically target hun-
dreds of genetic variants at once, this could never be a treatment
strategy given unknown and potentially devastating side effects
(like a drug RCT consisting of the simultaneous administration
of hundreds of compounds). In sum, causes established by
RCTs and genetic causes derived from within-family association
studies do not necessarily share many features beyond the core
concept of randomisation. Further discussion of the notion of
cause in genetics and the parallels between RCTs and genetically
informed methods such as Mendelian randomisation are available
elsewhere (Lynch, 2021; Nitsch et al., 2006).

In conclusion, we agree that behavioural genetics should look
to provide causal knowledge. To that end, perhaps the most useful
will be exploiting genetic data to understand phenotypic causation
and aetiological pathways. Genetically informed designs for causal
inference and, in particular, within-family designs, can play a key
role in improving aetiological understanding and, ultimately, pre-
vention and treatment (Howe et al., 2022a; Hwang, Davies,
Warrington, & Evans, 2021; Pingault et al., 2018).

Financial support. This research received no specific grant from any fund-
ing agency, commercial, or not-for-profit sectors.

Competing interest. None.

References

Davey Smith, G., Richmond, R., & Pingault, J.-B. (Eds.) (2021). Combining human genet-
ics and causal inference to understand human disease and development. Cold Spring
Harbor Laboratory Press.

Davey Smith, G. D., & Ebrahim, S. (2003). “Mendelian randomization”: Can genetic epi-
demiology contribute to understanding environmental determinants of disease?
International Journal of Epidemiology, 32(1), 1–22.

Fisher, R. (1952). Statistical methods in genetics. Heredity, 6, 1–12 (reprinted in 2010,
Int. J. Epidemiol., 39: 329–335). https://doi.org/10.1093/ije/dyp379

Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y.-S., Domm, J., Eustace, B. K., …
Corbacioglu, S. (2021). CRISPR-Cas9 gene editing for sickle cell disease and
β-thalassemia. New England Journal of Medicine, 384(3), 252–260. https://doi.org/
10.1056/NEJMoa2031054

Hannon, E., Gorrie-Stone, T. J., Smart, M. C., Burrage, J., Hughes, A., Bao, Y., … Mill, J.
(2018). Leveraging DNA-methylation quantitative-trait loci to characterize the rela-
tionship between methylomic variation, gene expression, and complex traits.
American Journal of Human Genetics, 103(5), 654–665. https://doi.org/10.1016/j.
ajhg.2018.09.007

Howe, L. J., Nivard, M. G., Morris, T. T., Hansen, A. F., Rasheed, H., Cho, Y., … Davies,
N. M. (2022a). Within-sibship genome-wide association analyses decrease bias in esti-
mates of direct genetic effects. Nature Genetics, 54(5), 581–592. https://doi.org/10.
1038/s41588-022-01062-7

Howe, L. J., Rasheed, H., Jones, P. R., Boomsma, D. I., Evans, D. M., Giannelis, A., …
Davies, N. M. (2022b). Educational attainment, health outcomes and mortality: A
within-sibship Mendelian randomization study. medRxiv, 2022.01.11.22268884.
https://doi.org/10.1101/2022.01.11.22268884

Hwang, L.-D., Davies, N. M., Warrington, N. M., & Evans, D. M. (2021). Integrating
family-based and Mendelian randomization designs. Cold Spring Harbor
Perspectives in Medicine, 11(3), a039503. https://doi.org/10.1101/cshperspect.a039503

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012).
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immu-
nity. Science (New York, N.Y.), 337(6096), 816–821. https://doi.org/10.1126/science.
1225829

Lynch, K. E. (2021). The meaning of “cause” in genetics. Cold Spring Harbor Perspectives
in Medicine, 11(9), a040519. https://doi.org/10.1101/cshperspect.a040519

Nitsch, D., Molokhia, M., Smeeth, L., DeStavola, B. L., Whittaker, J. C., & Leon, D. A.
(2006). Limits to causal inference based on Mendelian randomization: A comparison
with randomized controlled trials. American Journal of Epidemiology, 163(5), 397–403.
https://doi.org/10.1093/aje/kwj062

Pingault, J.-B., O’Reilly, P. F., Schoeler, T., Ploubidis, G. B., Rijsdijk, F., & Dudbridge, F.
(2018). Using genetic data to strengthen causal inference in observational research.
Nature Reviews Genetics, 19, 566–580.

Pingault, J.-B., Richmond, R., & Davey Smith, G. (2022). Causal inference with genetic
data: Past, present, and future. Cold Spring Harbor Perspectives in Medicine, 12(3),
a041271. https://doi.org/10.1101/cshperspect.a041271

Porcu, E., Sjaarda, J., Lepik, K., Carmeli, C., Darrous, L., Sulc, J., … Kutalik, Z. (2021).
Causal inference methods to integrate omics and complex traits. Cold Spring
Harbor Perspectives in Medicine, 11(5), a040493. https://doi.org/10.1101/cshperspect.
a040493

Richmond, R. C., & Davey Smith, G. (2022). Mendelian randomization: Concepts and
scope. Cold Spring Harbor Perspectives in Medicine, 12(1), a040501. https://doi.org/
10.1101/cshperspect.a040501

Sanderson, E., Glymour, M. M., Holmes, M. V., Kang, H., Morrison, J., Munafò, M. R.,…
Davey Smith, G. (2022). Mendelian randomization. Nature Reviews Methods Primers,
2(1), 1–21. https://doi.org/10.1038/s43586-021-00092-5

Singh, T., Poterba, T., Curtis, D., Akil, H., Al Eissa, M., Barchas, J. D., … Daly, M. J.
(2022). Rare coding variants in ten genes confer substantial risk for schizophrenia.
Nature, 604(7906), 509–516. https://doi.org/10.1038/s41586-022-04556-w

Zhu, J., Eichler, F., Biffi, A., Duncan, C. N., Williams, D. A., & Majzoub, J. A. (2020). The
changing face of adrenoleukodystrophy. Endocrine Reviews, 41(4), 577. https://doi.org/
10.1210/endrev/bnaa013

Polygene risk scores and
randomized experiments

Lauren N. Rossa , Kenneth S. Kendlerb and

James F. Woodwardc

aLogic and Philosophy of Science Department, University of California-Irvine,
Irvine, CA, USA; bVirginia Institute for Psychiatric and Behavioral Genetics and
Department of Psychiatry, Virginia Commonwealth University, Richmond, VA,
USA and cDepartment of History and Philosophy of Science, University of
Pittsburgh, Pittsburgh, PA, USA
rossl@uci.edu
kenneth.kendler@vcuhealth.org
jfw@pitt.edu
https://www.lps.uci.edu/∼rossl/
https://vipbg.vcu.edu/people/kenneth-kendler/
https://jameswoodward.org

doi:10.1017/S0140525X22002151, e198

Abstract

WeexploreMadole&Harden’s (2022) suggestion that single-nucle-
otide polymorphism (SNP)/trait correlations are analogous to ran-
domized experiments and thus can be given a causal interpretation.

We commend Madole & Harden (M&H) for their lucid dis-
cussion of the sense in which genes or single-nucleotide poly-
morphisms (SNPs) may legitimately be regarded as causes of
behavioral traits. We agree with much of what they say but
welcome clarification on some issues.

M&H adopt a broadly “interventionist” treatment of causation
– the minimal condition for some factor C to count as a cause for
an outcome E is that if, hypothetically, unconfounded manipula-
tions of C were to be performed these would lead to changes in
E. In the familiar case of a randomized experiment, this leads
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to the conclusion that an average causal effect (ACE) is a legiti-
mate causal notion. M&H observe that an ACE can be present
even though C does not have a uniform effect, even though a sim-
ilar ACE may not be present in populations different from the
population from which the experimental sample was drawn,
and even though the experiment tells us nothing about the mech-
anism by which Cs cause Es. We agree.

M&H suggest that because of the random nature of meiosis, SNP/
trait correlations from genome-wide association studies (GWASs)
and/or the polygene risk scores (PRSs) that incorporate these (or
more precisely, such correlations among full siblings) can be likened
toACEs andhencegivenacausal interpretation.Weexplore this claim.

Consider a set of fertilized eggs immediately after conception
drawn in a representative fashion from some population. Suppose
this set is divided randomly into two groups, such that at a partic-
ular SNP position, one nucleotide is experimentally imposed, say
A, while for the other group a different nucleotide, for example,
C, is imposed. Also suppose that the environments E are uniform
across the two groups. Then, any difference in the incidence of
some trait T across the two groups can be regarded as the ACE
of having A rather than C in that population and environment.

This is not an experiment that is currently technologically pos-
sible or morally acceptable. We introduce it only to provide some
intuition for what a randomized experiment involving SNP manip-
ulation that provides information about an ACE would look like. If
we consider SNP/trait correlations from a GWAS, there are critical
differences with the experiment just described. Even putting aside
population stratification, the random nature of meiosis does not
ensure that individuals with A at some locus in comparison with
those with C at that locus are causally similar in other respects
(as a genuine randomized experiment does). This is because of
linkage disequilibrium – the A/C difference is very likely correlated
with other causally relevant differences (often unobserved) nearby
in the subjects’ genomes that affect trait T. Indeed, the evidence is
that most SNPs reported in a GWAS are not causal for traits of
interest but are rather merely correlated with factors that are causal
– a point recognized by M&H when they suggest that most SNPs
have the status of “indicator” variables, tracking through correla-
tions other factors that are causal.

Moreover, there is another, more subtle disanalogy with the
randomized experiment described above. In that experiment, a
single treatment – for example, A versus C – is randomly imposed
on the population. Assuming the random nature of meiosis, a
GWAS corresponds to a huge number of different randomized
treatments in the population: for example, A versus C at SNP1,
G versus T at SNP2, and so on. An analogy would be an experi-
ment in which a large number of different drugs D1…Dn are
simultaneously randomly assigned to subjects with unknown cor-
relations among the assignments. Indeed, matters are even more
complex because haplotypes are randomized not SNPs. We
might perhaps conceptualize this as the assignment of random-
ized bottles to subjects, each containing a mixture of different
drugs. Neither of these scenarios has the straightforward causal
interpretation of a standard randomized experiment.

Are these problems ameliorated if, as M&H suggest, one only
compares full siblings? This will help with confounds having to
do with population stratification and also help, at least somewhat,
with potential environmental confounds (to the extent the sibs are
exposed to similar environments). However, the challenges posed
by genetic linkage remain – given a correlation between, for example,
the presence of A at some SNP and trait T, we still don’t know
whether A is causal for T or merely correlated with some genetic

factor that is causal. M&H acknowledge this, suggesting that we
should regard the causal factors as whole haplotype blocks.

One problem with this is that haplotype blocks are overly broad
candidates for causes, in the sense that although these will contain
causally relevant factors, they will also contain many more factors
that are causally irrelevant, with no information about which is
which. In this respect, citing a haplotype block as a cause seems
analogous to saying that something unknown in my refrigerator
causes an odor – not false but not particularly informative.
Moreover, we wonder whether such a causal interpretation of
SNP/trait correlations is necessary. As M&H suggest, one important
role for such information is as a control; allowing us to see the
causal role of other non-genetic (environmental) variables.
Correlational information not having a straightforward causal inter-
pretation can function as such a control as long as it is correlated
with the genuinely causal confounds that need to be controlled
for. A binary variable indicating whether a voter lived in
the South of the United States was often used as a control variable
in investigations of the causal influences on voting in the mid-
twentieth century. Residence in the South is not, in any ordinary
sense, a causal variable, but because it tracks or indicates genuinely
causal factors (e.g., racial attitudes) that influence voting, it can be
used as a control to isolate the causal role of other variables such
as income. Perhaps we should think of PRSs as functioning similarly
(for additional discussion, see Kendler & Woodward, under review).
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Abstract

It has been known for decades that inference concerning genetic
causes of human behavioral phenotypes cannot be legitimately
made from correlations among relatives. We claim that these
inferential difficulties cannot be overcome by assigning different
names to causes inferred from within-family and population-
level genome-wide association studies (GWASs). For educational
attainment, for example, unraveling gene–environment interac-
tions requires more than new names for causes.

Knowledge that a variable makes non-uniform, non-unitary, and
non-explanatory average differences in an outcome is defined by
Madole & Harden (M&H) as “first-generation causal knowledge”
(target article, sect. 1.1, para. 5). This is the kind of knowledge
that can be inferred from average treatment effects (ATEs) in

40 Commentary/Madole and Harden: Building causal knowledge in behavior genetics

https://doi.org/10.1017/S0140525X22000681 Published online by Cambridge University Press

https://orcid.org/0000-0002-0664-3803
mailto:shenhao@stanford.edu
mailto:mfeldman@stanford.edu
https://doi.org/10.1017/S0140525X22000681


randomized controlled trials (RCTs). RCTs are designed to be
counterfactual, producing results that can be compared for differ-
ent values of an experimental condition. The different outcomes
of such experiments may, however, depend on temporal, spatial,
or environmental contexts in which the experiments are carried
out, which may restrict the generality of the results.

M&H introduce “second-generation causal knowledge” (target
article, sect. 1.1, para. 7), which derives from understanding the
mechanisms that might explain why knowledge inferred from
RCTs is not uniform, unitary, or explanatory. Examples of such
mechanisms include the effect of the context in which the exper-
iment was carried out, and the role of unintended bias in the
choice of subjects (the lithium case in target article, sect. 2.4).
As more mediators and confounders are recognized and a more
complete causal chain is established, they hope that those closer
to the end of a causal chain might be more uniform, unitary,
and explanatory, and the reasons for the ATE better understood.

The juxtaposition of first- and second-generation knowledge is
blurred by the introduction (target article, sect. 3.3) of genes as
“shallow causes” (target article, sect. 3.5) of behavioral phenotypes
relative to deep causes. It is not clear whether the authors believe
deep causes to be first-generation causal knowledge. However,
shallow causes, which are also non-uniform, non-unitary, and
non-explanatory, seem to fall under the rubric of first-generation
causal knowledge and depend on when, where, how, and on
whom the phenotype is assessed. Confusion arises here because
second-generation causes are said to provide “a clear sense of
the mechanisms of change” by identifying “in what contexts
and with whom” causality can be inferred. Do the authors aim
for a more complete genetic causal chain, which we assume
would involve second-generation causal knowledge, but intend
to base it upon shallow causes, which appear to be first genera-
tion? A precise dichotomy of first- and second-generation causes,
and where deep and shallow causes fall in such a dichotomy,
would have been valuable.

Shallow causality’s conceptual legitimacy seems M&H to rely
on the fact that its limitations are shared with ATEs from
RCTs, which do have the advantage of being counterfactually
based. Shared limitations are hardly a strong reason to endorse
shallow causality as an analytic paradigm.

Neither population genome-wide association studies (GWASs)
nor classical heritability studies have a counterfactual basis, and
neither should be construed as revealing anything about causality
(Feldman & Lewontin, 1975; Lewontin, 1974; Shen & Feldman,
2020). Emphasizing genes as causes, M&H focus on within-family
studies, namely comparison between siblings. Given their parents’
genotypes, sibs’ genotypes can be regarded as a counterfactual
experiment only with respect to that family. From within-family
GWASs of educational attainment (EA), they conclude that
“genes cause EA.” “For behavior geneticists” they regard this as
“undoubtedly a triumph” (target article, sect. 3.3, paras. 3–4).

But is it? The largest GWAS of EA (Okbay et al., 2022)
included 3 million subjects and 53,000 sib pairs. The polygenic
score (PGS) for the general sample explained 10–16% of the var-
iance in EA. From the within-family (sib-pair) GWASs, the esti-
mate was that about 31% of the variance explained by the PGS
could be classified as “direct effects,” which are roughly equivalent
to causal. Burt (2023) goes into great detail about the dangers of
making general population inferences from within-family
GWASs. Here, we note that Okbay et al. (2022) report on
GWASs for EA from nearly 2,500 mate pairs and find strong evi-
dence of assortative mating on phenotypes other than EA itself

that are correlated with the PGS for EA. Geographic and environ-
mental factors most likely contributed to this assortative mating.
Within the general population, there are likely to be differences
among families, which may reflect cryptic population stratifica-
tion. Besides assortative mating, PGS are affected by gene–
environment interactions, gene–environment correlations, and
environmental variance (Okbay et al., 2022, p. 440). As pointed
out by Coop and Przeworski (2022), “the central challenge to
identifying genetic causes of behavioral traits” is “the immense
difficulty of disentangling population stratification from biological
and social effects.” Thus, it is not legitimate to claim that within-
family studies of EA lead to the conclusion “that genes caused
these differences” (target article, sect. 3.3, para. 3). In fact, it is
important to stress that PGSs “cannot be used to predict an
individual’s EA” (Okbay et al., 2022, p. 440).

M&H do recognize the difficulty of extrapolation from infer-
ence of genetic causes based on within-family studies to claims
about population GWASs. They state (target article, sect. 3.3,
para. 10) that genes make “some distal difference in the level of
attainment” or that “while genes cause EA, this is neither a singu-
lar nor a generic claim” (target article, sect. 3.3, para. 9.). Their
justification for the legitimacy of the concept of genes as a shallow
cause of traits like EA seems to be that statistical inference of
genetic causality shares the properties of being “local, probabilis-
tic, and distal” (target article, sect. 3.3, para. 5) with ATEs. They
conclude that “genetic effects conditional on the parental geno-
type are causal in the same sense as average treatment effects”
(target article, sect. 4, para 1). This is actually a statement about
within-family GWASs, and the paper’s conflation of causal infer-
ence from such studies with those of population-level GWASs
could be dangerous and should have been avoided. There is no
logical reason to believe that claims about causality based on
within-family studies also apply to the general population,
whether the causal paradigm is first or second generation, deep
or shallow (Coop & Przeworski, 2022, p. 851).

M&H are familiar with the shortcomings of the inferential
processes that culminate in claims that genes cause behavior. In
section 3.3, para. 6, they state “genes might cause EA but they
are certainly not the only cause of EA,” and in section 3.3,
para. 8 “the probability that genes matter for EA varies depending
on the environmental exposures.” Such statements seem to indi-
cate a genuflection in the direction of Lewontin’s (1974) demon-
stration that causality cannot be inferred from analysis of
variance. A straightforward and explicit statement to this effect
would have been preferable to introducing complicated defini-
tions of different kinds or levels of causality.
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Abstract

Madole & Harden’s assertion that the effects derived from
within-family genome-wide association studies (GWASs) and
from randomized controlled trials (RCTs) are equivalent is mis-
leading. GWASs are substantially more “non-unitary, non-uni-
form, and non-explanatory” than RCTs. While the within-
family GWAS bring us closer to identifying genetic causes,
whether it will change behavioral genetics into a causal science
is an open question.

Madole & Harden’s (M&H’s) argument that genetic effects derived
from within-family genome-wide association studies (GWASs) are
equivalent to average treatment effects from randomized controlled
trials (RCTs) rests on the assertion that both methods are “non-
unitary, non-uniform, and non-explanatory.” This contention is
misleading because these three “non-” dimensions are not binary,
but very much a matter of degree. Double-blind RCTs are more
likely to prevent the entry of other variables whose effects are con-
founded with those of the treatment, and thereby isolate the treat-
ment as the most likely cause of outcomes. Thus, well-designed
RCTs severely limit non-unitariness. RCTs of treatments that
prove to be highly efficacious directly demonstrate their greater uni-
formity of therapeutic effects. Moreover, RCTs that examine treat-
ment effects on not just clinical outcomes but mediating variables
like brain activity and physiological arousal can provide mechanis-
tic explanations of therapeutic effects (Horga, Kaur, & Peterson,
2014), and can select between alternative mechanisms for these
effects (e.g., Siegel, Cohen, & Warren, 2022).

Even with more than a million randomized trials of alleles,
within-family GWASs are much more non-unitary than a well-
designed RCT. Besides the indirect sibling-to-sibling genetic effects
that the authors address, there are other, multiple environmental
sources of variation in phenotypes that cannot be ruled out and
thus render within-family GWASs entirely non-unitary. Taking
one of many possibilities, differential parenting of siblings, even
when stemming from the siblings’ genetic differences, has develop-
mental effects that can amplify phenotypic differences over time.
Such unshared environmental influences are very difficult to measure

(Turkheimer & Waldron, 2000), and it cannot be assumed that they
will wash out with large enough samples (McCarthy et al., 2008).

The non-uniformity of GWASs is demonstrated by the needs
for very large samples (thousands of cases) and for replication
because of limited statistical power (McCarthy et al., 2008).
Both of these limitations stem from the need to correct for
approximately 1 million independent tests of allele-outcome
regressions in a typical GWAS (Visscher et al., 2017). For this rea-
son, the journal Behavior Genetics requires replication to consider
any GWAS for publication (Hewitt, 2012).

GWAS non-uniformity also results from the need to control
for genetic ancestry and thus potentially confounding genetic var-
iants that differ across populations (McCarthy et al., 2008). As a
result, virtually all GWASs have been of white Europeans, the
most widely appraised ancestry. Therefore, GWAS findings may
not apply to other ethnic groups, a non-uniformity that may exac-
erbate health disparities (Martin et al., 2019).

Another factor that grants RCTs more unitary causal inference
than GWASs is the level of validity of outcome assessment. RCTs
require accurate, or relatively “deep” assessments of behavioral out-
comes to establish treatments as robust causes of changes in those
outcomes. Because GWASs require very large samples that are
often gathered from biobanks or by consortia across studies, pheno-
types are typically assessed superficially to ensure standardization
(Friedman, Banich, & Keller, 2021). For example, assessment of
depression may be as simplistic as self-reported ratings. Although
simulations indicate that the large samples of GWASs have sufficient
power to discern genetic effects despite the large error associated with
such minimal assessments (Border et al., 2019), these typical GWASs
yield considerably lower heritability rates, and identify single-
nucleotide polymorphisms (SNPs) with much less specificity, than
GWASs with more valid phenotype assessments (Cai et al., 2020).

The above non-unitary and non-uniform factors may explain
why GWASs have repeatedly yielded small genetic effects for traits
that twin and family studies previously estimated to be large, what
has been termed the problem of “missing heritability” (Maher,
2008). GWAS heritability estimates are typically 40–80% lower
than those yielded by twin and family studies (Friedman et al.,
2021). For example, twin and family studies estimate genetic effects
for schizophrenia to be about 60% (e.g., Lichtenstein et al., 2009). In
contrast, a large GWAS (N = 3,322 cases and 3,587 controls without
the illness) conducted during the same time identified ∼74,000
genetic variants on a single chromosome that accounted for as little
as 3%, or as much as 30%, of the variance in schizophrenia, depend-
ing on the analytic approach employed (Purcell et al., 2009).

M&H introduce the within-family GWAS as having the poten-
tial to address the limitations of traditional heritability approaches
like twin studies, which cannot “specify which genes or, crucially,
how those genes are responsible for producing phenotypic
differences” (target article; sect. 3.1, para. 2). Yet they conclude
that the identified SNP has an “intermediate level of resolution,
encompassing all alleles in LD [linkage disequilibrium] with the
measured SNP” (target article; sect. 3.2.1, para. 10). In other
words, the identified SNP is highly correlated with – a marker
of – the causal variant, an implicit acknowledgment that the
within-family GWAS has the same, aforementioned limitations
as twin studies. Critically, modern arrays of genotyped SNPs
miss certain variants that are not in linkage disequilibrium (LD)
with the imputed SNP. While rare, these missed genetic variants
can nonetheless have a large effect on variation in phenotypes
(Visscher et al., 2017), which is also thought to underlie the afore-
mentioned “missing heritability” (Friedman et al., 2021).
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By identifying SNPs highly correlated with behavioral traits,
the within-family GWAS brings us closer to identifying genetic
causes. Whether it will alter the status of behavior genetics as a
causal science, however, is a wide open question.
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Abstract

We argue that Madole & Harden’s distinction between shallow
versus deep genetic causes can bring some clarity to causal
claims arising from genome-wide association studies (GWASs).
However, the authors argue that GWAS only finds shallow
genetic causes, making GWAS commensurate with the environ-
mental studies they hope to supplant. We also assess whether
their distinction applies best to explanations or causes.

Madole & Harden (M&H) aim to present “a clear perspective on
what it does – and does not – mean for genes to be causes” (target
article, sect. 1.2, para. 4). We agree that this is an important pro-
ject but are unsure whether they succeed in their overall aim. The
authors propose that genetic causes are like nearly all environ-
mental causes investigated in the social sciences: They are
non-uniform, non-unitary, and non-explanatory (target article,
sect. 1.3, para. 1). In other words, the genetic causes pointed to
by genome-wide association studies (GWASs) hold true only for
specific populations, their effects are probabilistic, not determin-
istic, and the exact nature of their causal relevance to the produc-
tion of the trait is unknown. M&H call such causes shallow causes.
The mitigating effects of lithium on mania, understood as an
average treatment effect from a randomized controlled trial, is
an example of a shallow cause. They acknowledge that this is
not the only one way in which genes play a causal role in produc-
ing traits and also identify deep genetic causes. Deep genetic
causes are uniform, unitary, and explanatory. Cystic fibrosis,
which is caused by two mutated copies of the cystic fibrosis trans-
membrane regulatory (CFTR) gene looks to provide an example
of a trait with a deep genetic cause.

While this distinction promises clarity, M&H often conflate
cause, genetic cause, and shallow (genetic) cause and, as a result,
they fail to separate genetic causal claims from environmental
causal claims presented by other social scientists. This makes
causes discovered by GWASs commensurate with the environ-
mental studies M&H hope to supplant. Second, the distinction
between shallow versus deep genetic causes can be helpful, but
only if applied carefully and consistently. For example, the
authors make apparently contradictory claims about GWASs for
educational attainment (EA): The results of GWASs “alone
would not move us closer to the conclusion that genes cause edu-
cational outcomes” and “we are currently in a position to con-
clude that genes cause EA” (target article, sect. 3.3, paras. 2 and
3). Their distinction between shallow and deep genetic causes
can help resolve this and other apparently contradictory claims
about genetic causation. We understand M&H to be saying
that while even the most extensive GWASs cannot support the
conclusion that certain genes are deep causes of a trait, current
GWASs do allow the claim that certain genes are shallow causes
of a trait. This claim is not contradictory and in fact is a clear
statement of their understanding of the promise of GWASs.
However, M&H introduce further confusion about the nature of
genetic causes.

M&H seem to say that deep genetic causes are in fact not
genetic causes because they are not causes at all. For example:
“Such a picture of genetic causes is entirely unwarranted when
we remember what it means for something to be a cause: non-
uniform, non-unitary, and non-explanatory” (target article, sect.
3.3, para. 4). Here they define a cause as non-uniform, non-
unitary, and non-explanatory, implying that deep genetic causes
are not just something GWASs can’t detect, but in fact are not
causes at all. Then, just two sentences later, M&H use the example
of cystic fibrosis as a genetic cause that they say is uniform, uni-
tary, and explanatory, that is, a deep genetic cause (target article,
sect. 3.3, para. 5).

We propose that this inconsistency on the status of deep genetic
causes arises from the account of causation M&H defend. As noted
earlier, their account of causation is meant to cover both genetic
causes and shallow genetic causes, which allows them to claim at
one point that GWASs can’t possibly be giving fuel to eugenicists
because genetic causes by definition are non-uniform, non-unitary,
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and non-explanatory (target article, sect. 1.3, para. 1 & sect. 3.5,
para. 1). So, what are we to make of deep genetic causes? M&H
clearly want to claim that some genetic causes are shallow and
some are deep, and that GWASs can only find shallow genetic
causes. In fact, M&H’s distinction between shallow genetic causes
and deep genetic causes seems to be set up to explicitly acknowledge
that there are various kinds of genetic causes. If this is right, then
they need a different account of genetic cause, and possibly cause
in general, in order to accommodate both shallow and deep genetic
causes.

M&H briefly review a few philosophical accounts of causation,
then claim to adopt a probabilistic version of Jim Woodward’s
(2003) manipulationist account. However, it is unclear how this
account fits GWASs, because there is no careful manipulation
of specific variables in GWASs, a point M&H acknowledge
when arguing for the superiority of within-family studies over
regular GWASs (target article, sect. 3.5, para. 1). Furthermore,
the distinction between shallow versus deep causes does not
straightforwardly map on to much philosophical discussion of
genetic causation (see e.g., Gannett, 1999; Lynch & Bourrat,
2017; Noble, 2008; Northcott, 2012; Oftedal, 2005; Schaffner,
2016; Sober, 2000; Waters, 2007). For example, M&H say that-
causes need not be mechanistic (target article, sect. 3.3, para.
11), while many philosophers, including those cited here, offer
accounts ofgenetic causation as being necessarily mechanistic.

M&H’s shallow versus deep distinction better tracks Eric
Turkheimer’s (1998, 2016) distinction between strong and weak
genetic explanations than it does distinctions in the philosophy
of science literature on genetic causation. For Turkheimer a
weak genetic explanation says “one way or another, genetic differ-
ences among people wind up correlated with phenotypic differ-
ences” (Turkheimer, 2016, p. 24). Neither shallow genetic
causes nor weak genetic explanations determine the exact differ-
ence that certain single-nucleotide polymorphisms (SNPs) make
in a phenotype but this is by design. A strong genetic explanation
by contrast is “the discovery that an observed phenotypic differ-
ence is a manifestation of a specific latent genetic mechanism”
(Turkheimer, 2016, p. 25). Both uncovering deep genetic causes
and providing strong genetic explanations can reveal specific
mechanisms.

While M&H’s shallow versus deep distinction may resolve
some apparent contradictions in their claims about GWASs and
causation, we propose that their distinction better points to a
way of separating alternate types of genetic explanations. This
allows that GWASs do lead to genetic explanations of traits but
only in the same sense in which non-genetic social science
leads to environmental explanations of traits.
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Abstract

Behavior genetics often emphasizes methods over the underly-
ing quality of the psychological information to which the meth-
ods are applied. A core aspect of this quality is the
demographic diversity of the samples. Building causal genetic
models based only on European-ancestry samples compro-
mises their generalizability. Behavior genetics researchers
must spend additional time and resources diversifying their
samples before emphasizing causation.

Madole & Harden (M&H) propose that within-family genetic
effects are analogous to randomized controlled trials (RCTs),
and therefore can help identify potential genetic causes of psycho-
logical phenomena. In doing so, the authors repeat the frequent
trope of RCTs as the “gold standard” (target article, sect. 1.1,
para. 2) for establishing causal claims. Although it is clear that
RCTs are optimally set up for such a task, using the language
of “gold standard” has been criticized for obscuring the many lim-
itations of the design (see Deaton & Cartwright [2018] for a thor-
ough treatment of the subject and Jones & Podolsky [2015] for a
historical discussion). The uncritical use of RCTs as an analogue
for genetic effects opens their arguments to many criticisms, ones
that are already prominent in work on behavior genetics. Among
others, these include insufficient attention to conceptualization
(Nguyen, Syed, & McGue, 2021) and measurement (Pelt,
Schwabe, & Bartels, 2022) of the target phenotype and lack of
sample diversity when seeking to establish generalizable claims
(Holden, Haughbrook, & Hart, 2022). By not incorporating
these major concerns in their paper, M&H unfortunately
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compound, rather than resolve, these issues in their otherwise
productive set of arguments.

The more general criticism levied toward both RCTs and
behavior genetics is the over-emphasis on method over substance.
M&H continue in this tradition, devoting careful attention to
establishing and calibrating causal claims. This is clearly a useful
and much-needed approach to thinking about causation, espe-
cially in psychology, but we must not overlook the quality of
the substantive information about which we seek to make causal
claims. Here, I highlight just one aspect of such quality, the racial/
ethnic diversity of samples included in behavior genetic studies,
and why such a consideration must be central to any effort to
build generalizable causal knowledge.

It is a fact of the design that RCTs sacrifice external validity for
the sake of internal validity, being high in efficacy, showing prom-
ising results in trials, but low in effectiveness, or lack of results
when translated to real-life conditions (Flay et al., 2005). RCTs
have been further criticized by researchers in multicultural psy-
chology and culturally adapted treatments for their lack of inclu-
sion of racial/ethnic minorities and thus limited generalizability
(Bernal & Scharrón-del-Río, 2001; Castro, Barrera, & Holleran
Steiker, 2010; Whaley & Davis, 2007). Consistent with the main-
stream view in psychology, the arguments made by M&H all
assume a universal, replaceable person; it does not matter where
the information comes from, so long as the proper modeling is
applied (see also Yarkoni, 2022). But, of course, strong design fea-
tures cannot overcome selection issues that can lead to misspeci-
fied models (Bradley et al., 2021).

The research on lithium as a treatment for manic symptoms
of bipolar disorder, highlighted by the authors, illustrates their
lack of attention to sample diversity. The second-generation
studies cited by M&H – those that seek to identify specific causal
mechanisms beyond an average treatment effect – relied entirely
on data from White men (Mertens et al., 2015; Santos et al.,
2021; Stern et al., 2018). It may well be that the identified
mechanisms are generalizable beyond this very narrow group,
but it seems prudent to investigate this question prior to broadly
claiming generalizable causal knowledge. Moreover, the authors
frame this kind of second-generation investigation as addressing
the problem of lack of generalizability beyond the first-generation
average treatment effect, but it does so only with respect
to individual differences, and not demographic/population
heterogeneity.

An argument could be made to justify sample homogeneity in
first-generation studies, when putative causal factors are initially
identified, and explore generalizability as part of the
second-generation process. This is related to the issue of “porta-
bility” of findings from genetic studies (or “effectiveness” with
RCTs), which refers to the fact that average effects identified
through first-generation behavior genetics studies may not gener-
alize to new contexts or populations. Indeed, the impressive Lee
et al. (2018) study of educational attainment of 1.1 million indi-
viduals included only participants with European ancestry.
When the researchers attempted to “port” the polygenic scores
derived from the European-ancestry group to a sample of Black
Americans, the 10.6% R2 attenuated by 85%, a result that they
indicated was “typical of what has been reported in other studies”
(p. 1115). M&H fail to mention the degree of this problem,
let alone what the implications are for building generalizable
causal knowledge. For example, the omnigenic model highlights
the need for diversity in discovery samples to identify and separate
both core and peripheral variants (Mathieson, 2021; see also

Wojcik et al., 2019). Thus, diversity is central to first-generation
studies.

Moreover, in discussions of portability, left unsaid is from
whom to whom the results are being ported, which is nearly
always from White/European samples to other ancestry or racial
groups. Rarely do we seek to, for example, generalize results
from African samples to other groups (Adetula, Forscher,
Basnight-Brown, Azouaghe, & IJzerman, 2022). This dynamic
sets up a standard in which the White/European results serve as
the basis for the first-generation causal knowledge, and any devi-
ations from it are problems to be solved or, more often, swept
under the rug. Such a perspective is consistent with the deficit
model that has for decades dominated psychological research on
diversity (Cauce, Coronado, & Watson, 1998), and unreasonably
constrains the context of discovery.

The issues mentioned here are reminiscent of the aphorism
“garbage in, garbage out” in the context of meta-analyses. That
is, no degree of sophisticated analyses will save your substantive
conclusions if the studies included therein are weak or uninforma-
tive. To be fair, M&H clearly know this, but the issue is treated
more in passing rather than as a central concern in their quest
to build stronger causal knowledge, a quest which I greatly sup-
port. They use a catch phrase in similar structure to “garbage
in, garbage out” when discussing causal reasoning, “no causes
in, no causes out,” which, fittingly, pertains to the reasoning
and not the quality of the information within it. Combining
these two, I might say, “no diversity in, no causes at all.”
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Abstract

The overarching theme of causality in behavioral genetics is dis-
cussed on epistemological grounds. Evidence is offered in favor
of a continuum spectrum in causality, in contrast to discrimina-
tion between causal factors and associations. The risk of invali-
dating exploratory studies in behavior genetics is discussed,
especially for the potential impact on those fields of medicine
interested in complex behaviors.

Madole & Harden (M&H) propose a discrimination between
knowledge of causality and, on the contrary, correlation in behav-
ior genetic studies, with a particular emphasis on genome-wide
association studies (GWASs). Far from being a dichotomous dif-
ference, we argue that the boundary between these two types of
causal relationships is indeed continuous, and any distinction
would be arbitrary. Correlation itself is based on a counterfactual
assumption, that is, that there is no relationship between the stud-
ied factors (Benesty, Chen, Huang, & Cohen, 2009). The line
between counterfactuality and causality seems to be briefly

addressed in the manuscript, but only implied in both the intro-
duction and in the rest of the article. We agree with the original
authors that counterfactuality is not the only acceptable frame-
work of causality, as counterfactuality itself might not prove to
be either specific or sensitive to causality (Baumgartner, 2008).
In fact, recent developments in the regularity theory of causation
(based on the premises that causes are regularly followed by their
effects; Baumgartner, 2008) have allowed for a precise estimation
and quantification of confidence in causal relationships
(Baumgartner, 2008), while also offering the opportunity to assess
causality beyond dichotomous categories (whether “ill” or
“healthy,” or expressing a certain behavior or not). These develop-
ments allow researchers to move toward approaches encompass-
ing the possibility of evaluating spectra of continuum in traits,
possibly through fuzzy-logic algorithms (Baumgartner &
Ambühl, 2020), granting a more flexible evaluation of the interac-
tions between such traits and specific genes. Specific research
questions and study designs might then benefit from a careful
operationalization of causality in investigation protocols, defining
outcome variables either dichotomous, when methodologically
sensible, or continuous, in the majority of cases where complex
traits need to be considered.

M&H also argue that genetic analyses might not be causally
informative, as the relationship between genotype and phenotype
can be complex in behavior research. A critique is moved about
the results of genetic studies, which are in some cases misquoted
or overinflated. Indeed, no single study can inform our under-
standing of the complex biology behind the interaction of genes
and traits. There is a real and actual risk of adopting “evidence-
based” policies on frail epistemological and scientific grounds.
This risk, however, is contemplated by most contemporary
researchers and most of the general public (Visscher, Brown,
McCarthy, & Yang, 2012). Nonetheless, supporting a careful
review of evidence before adopting interventions does not invali-
date the scientific knowledge gained by conducting behavior
genetic studies. Even if GWASs were only to offer “association”
knowledge rather than “true” causal understanding of underlying
factors, it is relevant to point out that other means are available in
genetic research to reach this goal, which may be more oriented
toward “deeper” and “mechanistic” causal analysis (e.g., pathway
analysis, protein functionality studies, endophenotype studies;
Kendler & Neale, 2010); but in order for these tools to be used
effectively, because of their high relative costs and technical com-
plexity, candidate genes must be identified previously through
GWASs. In fact, GWASs have offered considerable insight into
nearly every field of contemporary biological sciences, from phar-
macodynamics and pharmacokinetics, to proteomics and tran-
scriptomics (Visscher et al., 2012).

A clarification of the term “causality” may also aid in delim-
iting the space of the discussion. Any operative definition of
“causality” should consider scientific endeavors in an integrative
manner, and as the result of multidisciplinary efforts. In fact,
“science” can be defined as a continuous dialectical pursuit
(Popper, 1940), where “knowledge” is constantly updated with
evidence derived from different sources. Therefore, scrutiny
over preliminary evidence is indeed warranted before it is
allowed to inform clinical or policy interventions. However, a
primary goal is also to seek a balance between addressing the
neglected needs of an individual and violating the right not to
be harmed, which is a statutory principle that has guided the
field of medicine since its inception. For these reasons, the
risk of invalidating exploratory evidence in neuroscience in

46 Commentary/Madole and Harden: Building causal knowledge in behavior genetics

https://doi.org/10.1017/S0140525X22000681 Published online by Cambridge University Press

https://doi.org/10.1016/j.ajhg.2021.07.003
https://doi.org/10.1016/j.ajhg.2021.07.003
https://doi.org/10.1016/j.ajhg.2021.07.003
https://doi.org/10.1038/nature15526
https://doi.org/10.1038/nature15526
https://doi.org/10.1111/spc3.12628
https://doi.org/10.1111/spc3.12628
https://doi.org/10.31234/osf.io/7uz9y
https://doi.org/10.31234/osf.io/7uz9y
https://doi.org/10.1038/s41380-020-00981-3
https://doi.org/10.1038/s41380-020-00981-3
https://doi.org/10.1038/mp.2016.260
https://doi.org/10.1038/mp.2016.260
https://doi.org/10.1037/0003-066X.62.6.563
https://doi.org/10.1037/0003-066X.62.6.563
https://doi.org/10.1038/s41586-019-1310-4
https://doi.org/10.1038/s41586-019-1310-4
https://doi.org/10.1017/S0140525X20001685
https://doi.org/10.1017/S0140525X20001685
https://orcid.org/0000-0002-9931-5621
https://orcid.org/0000-0001-9695-0972
https://orcid.org/0000-0003-1265-491X
https://orcid.org/0000-0002-9291-2124
mailto:livio.tarchi@unifi.it
mailto:giuseppepierpaolo.merola@unifi.it
mailto:giovanni.castellini@unifi.it
mailto:valdo.ricca@unifi.it
https://doi.org/10.1017/S0140525X22000681


general, and behavioral genetics in particular, needs to be dis-
cussed. The hazard to implicitly propose new criteria in
research, that is to consider “association studies” as secondary
or even detrimental, should be critically evaluated, as it might
severely impact both patients and researchers. For instance, lim-
ited funding and scarcity of resources may favor those capable of
conducting large-scale “mechanistic” studies, harming scientific
independence, tilting the balance in favor of consortium-led
enterprises, with negative consequences on originality, scrutiny,
and productivity in research (Wang, Veugelers, & Stephan,
2017). Large-scale “mechanistic” studies may also worsen the
over-representation of white Anglo-Saxon, European, or
East-Asian individuals in genetic studies (Sirugo, Williams, &
Tishkoff, 2019). Additionally, research on several clinical condi-
tions may never reach the volume necessary to conduct a large-
scale investigation (Rosenberg & Finn, 2022), and no existing
knowledge at present may properly guide causal “mechanistic”
studies. Especially in those fields of medicine interested by com-
plex behaviors (e.g., psychology, neurology, psychiatry), low
prevalence and clinical heterogeneity burden the ease-of-access
to interventional programs, as well as the inclusion in observa-
tional studies (Mitchell, Maki, Adson, Ruskin, & Crow, 1997).
However, it is possible to adopt mitigating options. For example,
longitudinal designs can reach higher statistical power than
cross-sectional ones, increasing replicability and confidence in
the association between genes and phenotype (Rosenberg &
Finn, 2022). Again, GWASs offer a cost-effective opportunity
to first assess associations between genes and traits in these pop-
ulations, and later inform more targeted protocols or interven-
tions. Finally, the same conditions interested by low
prevalence or high heterogeneity demand urgency in describing
causal relationships, as they are taxed by a high rate of inade-
quacy in treatment (Bulik, 2021). For these reasons, invalidating
behavioral genetic studies solely on concerns of describing causal
associations may severely impact those individuals who they
may benefit the most.
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Abstract

The view advanced by Madole & Harden falls back on the
dogma of a gene as a DNA sequence that codes for a fixed prod-
uct with an invariant function regardless of temporal and spatial
contexts. This outdated perspective entrenches the metaphor of
genes as static units of information and glosses over develop-
mental complexities.

Population geneticists have historically deployed the concept of
genes as statistical, rather than material, entities (Griffiths &
Tabery, 2008). Although this approach may have sufficed in the
era of traditional twin studies of behavior, the advent of genome-
wide association studies (GWASs) seems to require some engage-
ment with thorny questions around how variation in DNA
sequences might be associated with variations in phenotype.
The neoclassical view of the gene as a sequence of DNA encoding
a single transcript that uniformly produces a particular protein
(Portin & Wilkins, 2017) has been adopted by behavior geneticists
to provide a biological foundation for their otherwise purely stat-
istical framework. However, decades of empirical findings have
long exposed the deficiencies of the neoclassical view. The “post-
genomic era” is replete with findings that the same sequence of
DNA can be used to derive a variety of transcripts (e.g.,
Griffiths & Stotz, 2006; McManus & Graveley, 2011; The
ENCODE Project Consortium, 2007, 2012), and that products
derived from the same DNA sequence can exhibit divergent struc-
tures and functions depending on their cellular context
(Piatigorsky, 2007). The cellular signals driving these processes,
including epigenetic modifications such as DNA methylation,
partly reflect responses to an individual’s social and ecological sit-
uation (e.g., Meaney, 2010). The activity of the genome develops
selectively and responsively to fluctuating physiological condi-
tions, undermining the idea of a prespecified, constant function
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inherent to a particular sequence of DNA (Neumann-Held,
2001). These realizations necessitate a shift from an “agentive”
role for genes to a “reactive” view of the wider genome embedded
within the organism as a developmental system (Keller, 2014).
Related lines of evolutionary thought emphasizing the primacy
of development suggest that genes should be seen as followers,
not leaders, of adaptive plasticity (Newman, 2019; West-
Eberhard, 2003).

What is a behavior geneticist to do? Rather than engage with
the postgenomic complexities, Madole & Harden (M&H) limit
themselves to the neoclassical dogma, with DNA framed as a
“specific set of instructions” (target article, sect. 3.3, para. 10)
that weathers all the variability that “context” can throw at it
(target article, sect. 3.3, para. 8). To an extent, they acknowledge
the complexities through a “garden of forking paths” metaphor
(target article, sect. 3.3, para. 10), but this path only appears to
go forward, from a foundational DNA sequence that is inherited
at conception and encodes the same product regardless of spatial
and temporal context. However, as noted by Oyama decades ago,
the metaphorical “information” in the genome is not static: It
develops along with the organism (Oyama, 1985). Further, there
is no consideration of the circular causation that runs all the
way through organismal functioning (Witherington, 2011) and
that is apparent even at the level of DNA transcription. In our
view, the neglect of circular causation reflects a neglect of
development, long regarded as an afterthought by the field of
behavior genetics. In contrast to staid models of behavioral genet-
ics, developmental systems perspectives allow for the multifaceted
complexities of ontogeny (Gottlieb, 1995; Overton & Lerner, 2014).

Processes that modify DNA transcription and translation are
responsive to temporal and situational changes for the organism.
Consider, for example, structural brain anatomy, a phenotype
popular for study in the genetics literature. Rather than exhibiting
a linear growth trajectory, brain development varies over time
across types of growth (e.g., cortical thickness vs. surface area), tis-
sues (i.e., gray vs. white matter), and regions (Fjell et al., 2019; Li
et al., 2013). Correspondingly, genomic processes relevant to
brain development vary across the lifespan as well. For example,
while “clusters” of cortical thickness development (i.e., areas of
the cortex showing longitudinal intercorrelation over time) were
found to overlap substantially with adult “genetic clusters” (i.e.,
areas previously associated with shared genetic influence), there
was only limited overlap between developmental and genetic clus-
ters for cortical surface area, which suggests divergent patterns of
developmental organization (Fjell et al., 2019). Further, these
kinds of developmental processes are sensitive to experience,
with epigenetic influences modifying gene expression relevant to
neurodevelopment in response to exposures ranging from lead
poisoning and child maltreatment to maternal mental health
and exercise (Fujisawa et al., 2019; Miguel, Pereira, Silveira, &
Meaney, 2019; Robakis et al., 2022; Senut et al., 2012). Behavior
geneticists, for whom linear-additive models of gene and environ-
ment account for variation in phenotypes, might overinterpret
individual statistical associations between single-nucleotide poly-
morphisms (SNPs) and outcome measures (e.g., brain volume
at a particular point in time) and leave unexamined the entwined,
dynamic nature of structural brain development.

The interpretation by M&H of polygenic scores as reflecting
an individual’s genetic “propensity” (target article, sect. 3.1,
para. 4) or “risk” (target article, sect. 3.4, para. 3) further high-
lights a neoclassical view of DNA as an unmoved mover. Their
deployment of polygenic scores to compare the size of “genetic

effects” on educational attainment across contexts (target article,
sect. 3.3, paras. 8–9), for example, also assumes that polygenic
scores capture polymorphisms “for” relevant traits in a context-
general sense. This account fails to leave explanatory room for
multifinality, obscuring plausible biological and/or social interme-
diaries (e.g., neurodevelopment, sociocultural biases) between
SNPs and the target outcome (Kaplan & Turkheimer, 2021). In
contrast, a developmental systems approach engages with the
multilevel complexities of how phenotypic variation is generated
(Gawne, McKenna, & Nijhout, 2018) and with notions of inher-
itance that extend beyond DNA (Jablonka & Lamb, 2005). Such
an account sees the genome as one resource (among many)
used by the developmental system to grow (Overton, 2010) and
recognizes the importance of developmental change and associ-
ated variation in psychobiological processes, such as epigenetic
influences on homeostatic self-regulation (Cao-Lei et al., 2016).
If the neoclassical view of DNA and genes, combined with a
neglect of developmental process, remains the foundation of
behavior genetics, any amount of methodological and statistical
prowess in GWAS approaches will fail to move us forward in
terms of understanding the complexities of human behavior.

Financial support. This research received no specific grant from any fund-
ing agency, commercial, or not-for-profit sectors.

Competing interest. None.

References

Cao-Lei, L., Veru, F., Elgbeili, G., Szyf, M., Laplante, D. P., & King, S. (2016). DNA meth-
ylation mediates the effect of exposure to prenatal maternal stress on cytokine produc-
tion in children at age 13½ years: Project Ice Storm. Clinical Epigenetics, 8, 54. https://
doi.org/10.1186/s13148-016-0219-0

Fjell, A. M., Chen, C., Sederevicius, D., Sneve, M. H., Grydeland, H., Krogsrud, S. K., …
Walhovd, K. B. (2019). Continuity and discontinuity in human cortical development
and change from embryonic stages to old age. Cerebral Cortex, 29, 3879–3890. https://
doi.org/10.1093/cercor/bhy266

Fujisawa, T. X., Nishitani, S., Takiguchi, S., Shimada, K., Smith, A. K., & Tomoda, A.
(2019). Oxytocin receptor DNA methylation and alterations of brain volumes in mal-
treated children. Neuropsychopharmacology, 44, 2045–2053. https://doi.org/10.1038/
s41386-019-0414-8

Gawne, R., McKenna, K. Z., & Nijhout, H. F. (2018). Unmodern synthesis:
Developmental hierarchies and the origin of phenotypes. BioEssays, 40, 1600265.
https://doi.org/10.1002/bies.201600265

Gottlieb, G. (1995). Some conceptual deficiencies in “developmental” behavior genetics.
Human Development, 38, 131–141. https://doi.org/10.1159/000278306

Griffiths, P. E., & Stotz, K. (2006). Genes in the postgenomic era. Theoretical Medicine
and Bioethics, 27, 499–521. https://doi.org/10.1007/s11017-006-9020-y

Griffiths, P. E., & Tabery, J. (2008). Behavioral genetics and development: Historical and
conceptual causes of controversy. New Ideas in Psychology, 26, 332–352. https://doi.
org/10.1016/j.newideapsych.2007.07.016

Jablonka, E., & Lamb, M. J. (2005). Evolution in four dimensions: Genetic, epigenetic,
behavioral, and symbolic variation in the history of life. MIT Press.

Kaplan, J. M., & Turkheimer, E. (2021). Galton’s Quincunx: Probabilistic causation in
developmental behavior genetics. Studies in History and Philosophy of Science, 88,
60–69. https://doi.org/10.1016/j.shpsa.2021.04.001

Keller, E. F. (2014). From gene action to reactive genomes. The Journal of Physiology, 592,
2423–2429. https://doi.org/10.1113/jphysiol.2014.270991

Li, G., Nie, J., Wang, L., Shi, F., Lin, W., Gilmore, J. H., & Shen, D. (2013). Mapping
region-specific longitudinal cortical surface expansion from birth to 2 years of age.
Cerebral Cortex, 23, 2724–2733. https://doi.org/10.1093/cercor/bhs265

McManus, C. J., & Graveley, B. R. (2011). RNA structure and the mechanisms of alter-
native splicing. Current Opinion in Genetics & Development, 21, 373–379. https://
doi.org/10.1016/j.gde.2011.04.001

Meaney, M. J. (2010). Epigenetics and the biological definition of gene × environment
interactions. Child Development, 81, 41–79. https://doi.org/10.1111/j.1467-8624.2009.
01381.x

Miguel, P. M., Pereira, L. O., Silveira, P. P., & Meaney, M. J. (2019). Early environmental influ-
ences on the development of children’s brain structure and function. Developmental
Medicine & Child Neurology, 61, 1127–1133. https://doi.org/10.1111/dmcn.14182

48 Commentary/Madole and Harden: Building causal knowledge in behavior genetics

https://doi.org/10.1017/S0140525X22000681 Published online by Cambridge University Press

https://doi.org/10.1186/s13148-016-0219-0
https://doi.org/10.1186/s13148-016-0219-0
https://doi.org/10.1186/s13148-016-0219-0
https://doi.org/10.1093/cercor/bhy266
https://doi.org/10.1093/cercor/bhy266
https://doi.org/10.1093/cercor/bhy266
https://doi.org/10.1038/s41386-019-0414-8
https://doi.org/10.1038/s41386-019-0414-8
https://doi.org/10.1038/s41386-019-0414-8
https://doi.org/10.1002/bies.201600265
https://doi.org/10.1002/bies.201600265
https://doi.org/10.1159/000278306
https://doi.org/10.1159/000278306
https://doi.org/10.1007/s11017-006-9020-y
https://doi.org/10.1007/s11017-006-9020-y
https://doi.org/10.1016/j.newideapsych.2007.07.016
https://doi.org/10.1016/j.newideapsych.2007.07.016
https://doi.org/10.1016/j.newideapsych.2007.07.016
https://doi.org/10.1016/j.shpsa.2021.04.001
https://doi.org/10.1016/j.shpsa.2021.04.001
https://doi.org/10.1113/jphysiol.2014.270991
https://doi.org/10.1113/jphysiol.2014.270991
https://doi.org/10.1093/cercor/bhs265
https://doi.org/10.1093/cercor/bhs265
https://doi.org/10.1016/j.gde.2011.04.001
https://doi.org/10.1016/j.gde.2011.04.001
https://doi.org/10.1016/j.gde.2011.04.001
https://doi.org/10.1111/j.1467-8624.2009.01381.x
https://doi.org/10.1111/j.1467-8624.2009.01381.x
https://doi.org/10.1111/j.1467-8624.2009.01381.x
https://doi.org/10.1111/dmcn.14182
https://doi.org/10.1111/dmcn.14182
https://doi.org/10.1017/S0140525X22000681


Neumann-Held, E. M. (2001). Let’s talk about genes: The process molecular gene concept
and its context. In S. Oyama, P. E. Griffiths & R. D. Gray (Eds.), Cycles of contingency:
Developmental systems and evolution (pp. 69–84). MIT Press.

Newman, S. A. (2019). Inherency of form and function in animal development and evo-
lution. Frontiers in Physiology, 10, 702. https://doi.org/10.3389/fphys.2019.00702

Overton, W. F., & Lerner, R. M. (2014). Fundamental concepts and methods in develop-
mental science: A relational perspective. Research in Human Development, 11, 63–73.
https://doi.org/10.1080/15427609.2014.881086

Overton, W. F. (2010). Life-span development: Concepts and issues. In R. M. Lerner
(Series Ed.) & W. F. Overton (Vol. Ed.), Handbook of life-span development:
Vol. 1. Cognition, biology, and methods across the lifespan (pp. 1–29). Wiley.
Retrieved from https://doi.org/10.1002/9780470880166.hlsd001001

Oyama, S. (1985). The ontogeny of information. Cambridge University Press.
Piatigorsky, J. (2007). Gene sharing and evolution: The diversity of protein functions.

Harvard University Press.
Portin, P., & Wilkins, A. (2017). The evolving definition of the term “gene”. Genetics, 205,

1353–1364. https://doi.org/10.1534/genetics.116.196956
Robakis, T. K., Roth, M. C., King, L. S., Humphreys, K. L., Ho, M., Zhang, X., …

Gotlib, I. H. (2022). Maternal attachment insecurity, maltreatment history, and
depressive symptoms are associated with broad DNA methylation signatures in
infants. Molecular Psychiatry, 27, 3306–3315. https://doi.org/10.1038/s41380-
022-01592-w

Senut, M. C., Cingolani, P., Sen, A., Kruger, A., Shaik, A., Hirsch, H., … Ruden, D.
(2012). Epigenetics of early-life lead exposure and effects on brain development.
Epigenomics, 4, 665–674. https://doi.org/10.2217/epi.12.58

The ENCODE Project Consortium (2007). Identification and analysis of functional ele-
ments in 1% of the human genome by the ENCODE pilot project. Nature, 447,
799–816. https://doi.org/10.1038/nature05874

The ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements
in the human genome. Nature, 489, 57–74. https://doi.org/10.1038/nature11247

West-Eberhard,M. J. (2003).Developmental plasticity and evolution. OxfordUniversity Press.
Witherington, D. C. (2011). Taking emergence seriously: The centrality of circular cau-

sality for dynamic systems approaches to development. Human Development, 54,
66–92. https://doi.org/10.1159/000326814

On the big list of causes

Eric Turkheimer

University of Virginia, Charlottesville, VA, USA
ent3c@virginia.edu; https://uva.theopenscholar.com/eric-turkheimer

doi:10.1017/S0140525X22002096, e205

Abstract

The methodological shift from twin studies to genome-wide
association studies (GWASs) diminished estimates of true
genetic causation underlying statistical heritability of behavioral
differences. The sum total of causal genetic influence on behav-
ior is not zero, but, (a) no one cited in the target article ever
thought this was the case, and (b) there is still little known
about concrete instances of genetic causation.

The target article is pitched as an endorsement of genetic causa-
tion, but is mostly concerned with discounting it. Start at the
beginning: What do we actually know, with dead solid
no-philosophy certainty, about the relationship between the
human genome and complex behavioral phenotypes? We know
there is a correlation between genetic and phenotypic similarity.
In humans (as opposed to the farm animals for whom the concept
was originally designed) the “heritability” of a trait is estimated as
the unstandardized slope of the regression of phenotypic on geno-
typic similarity. I will refer to this as the “G-P correlation” to steer
clear of the briar patch surrounding heritability per se.

Pairs of identical twins are more similar than pairs of fraternal
twins, for more or less every behavioral trait. Genetically more
similar pairs in a GREML matrix are more similar than less sim-
ilar pairs, once again for every phenotype. (The magnitude of the
GREML G-P correlation is usually much smaller than it is for
twins; more about this below.) Although it depends on how you
measure it, the G-P correlation is not small. Especially during
the twin study era of the previous scientific generation, G-P cor-
relations for the common objects of investigation – intelligence,
personality, mental illness, problematic behavior like criminality
– were estimated to be from 0.4 to 0.8.

All correlations are caused by something. Thinking about what
might cause the G-P correlation of a behavioral phenotype
focuses our attention on what we don’t know. In the twin study
era we did not know which genes were involved; without knowing
the genes we could obviously not know anything about the direc-
tion, let alone the mechanism, of the genetic effect. Without the
direction or the mechanism of the effect, we could know nothing
about its potency or its scope. A G-P correlation could be caused
by the hard biological consequences of rare genes of large effect,
systems of polygenes operating on endophenotypes, violations of
the equal environments assumption, uncontrollable correlations
between genetic and environmental effects, gene–environment
interactions, and so on. The activity of sorting through this hair-
ball of causes, mostly without the benefit of experimental control,
is called social science genomics. Social science has its virtues, and
twin studies produced a great deal of social science, but twin stud-
ies were decidedly unsuccessful at identifying genetic (or for that
matter environmental) causes.

My major difference with the authors of the target article
involves their contention that this state of affairs was fundamentally
changed by the completion of the human genome project and the
development of genome-wide association studies (GWASs) and
their attendant methods. Modern DNA-based genomics, to be
sure, has provided the ability to conduct genetically informed social
science in new ways, but these new methods, as well-documented
by the target article, have all served to diminish our estimation of
genetic causation. First, linkage and association studies showed
that there are few big genes down there, at least not for behavioral
traits in the normal range. Then GWASs showed there were no
non-tiny genes down there, and that G-P correlations estimated
among unrelated people were much smaller than twin correlations,
closer to 0.2 than to 0.6. Then, in what is undeniably the most
interesting social scientific method developed since the multivariate
twin study, all of the within-family methods described in the target
article reduced the causally relevant part of the G-P correlation for
behavioral traits by at least half. The actionable part of the correla-
tion, estimated as a real number in the form of a polygenic score
(PGS), is less than that, under 5% for even the most
intensely studied traits, with samples in the millions. Might there
be some solid gold genetic causes down there somewhere in the
remaining 5%? Maybe, but with a few exceptions we still don’t
know the which, why, how, or where of any of them.

Zuckerman (1987) observed on these pages that “All parents are
environmentalists until they have their second child.” I have three
children, and although their parents happen to be concordant for
educational attainment (EA), there remains some within-family
variation. It seems reasonable that 5% of those differences (the met-
ric doesn’t quite apply, but you get the idea) are causally related to
unknown, but certainly complex, genetic differences. If there is a
big list somewhere called “causes of human differences in behav-
ior,” genetic differences deserve to be on it. The nature side of
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the old debate, however, sometimes lures opponents into defending
the absurd null hypothesis that the net causal genetic effect on
human behavioral differences is zero. Does anyone actually believe
this? I (third from the skeptical left in Fig. 1 of the target article)
certainly don’t. Block (1995, second from left) doesn’t deny genetic
causation; in fact, just like the target article it is about genetic cau-
sation, and the inadequacy of heritability coefficients for quantify-
ing it. Lewontin (1974, first on the left) was, after all, a geneticist:
“The analysis of causes in human genetics is meant to provide us
with the basic knowledge we require for correct schemes of envi-
ronmental modification and intervention” (p. 525).

We can now see the outcome of the nature–nurture debate as
regards human behavioral differences, and it is not what anyone
expected. Genetic differences among humans do not determine
behavioral differences. Although genetic differences aren’t
irrelevant to behavioral differences either, genetic causation of
human behavior is weak, thin, contingent, gloomy, first-generation,
call it what you will. That conclusion comes as no surprise. The
surprise is that the crucial discoveries about the limitations of
genetic causation were made not by environmentalists, left-leaning
scientists, or philosophers of causation, but by the geneticists them-
selves. Once upon a time the so-called genetic revolution produced
a paradigm shift in social science by showing that human genetic
and behavioral differences are always correlated. Now it has pro-
duced a second shift, a counter-revolution, by showing that while
G-P correlations have certain methodological consequences for
social scientific practice, the direct causal genetic effects that under-
lie them are so small and indeterminate as to place few constraints
on our individual or collective self-determination.
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Abstract

We received 23 spirited commentaries on our target article from
across the disciplines of philosophy, economics, evolutionary
genetics, molecular biology, criminology, epidemiology, and
law. We organize our reply around three overarching questions:
(1) What is a cause? (2) How are randomized controlled trials
(RCTs) and within-family genome-wide association studies
(GWASs) alike and unalike? (3) Is behavior genetics a qualita-
tively different enterprise? Throughout our discussion of these
questions, we advocate for the idea that behavior genetics shares
many of the same pitfalls and promises as environmentally ori-
ented research, medical genetics, and other arenas of the social
and behavioral sciences.

R1. Introduction

When opposing groups of intelligent, highly educated, competent scien-
tists continue over many years to disagree, and even to wrangle bitterly
about an issue they regard as important, it must sooner or later become
obvious that the disagreement is not a factual one.… If this is, as I believe,
the case, we ought to consider the roles played in this disagreement by
semantic difficulties arising from concealed differences in the way differ-
ent people use the same words, or in the way the same people use the same
words at different times; … and by differences in their conception of what
is an important problem and what is a trivial one, or rather what is an
interesting problem and what is an uninteresting one. (Lehrman, 1970,
pp. 18–19)

Behavior genetics is a topic about which scientists and scholars
have continued over many years to disagree, sometimes bitterly.
One feature that makes this rancorous debate curious is that the
overarching conclusion of behavior genetics – namely, that
there are causal genetic effects on human behavioral differences
– is often described as obvious and uninteresting. Turkheimer,
for instance, wrote off the “absurd null hypothesis” that genetic
effects on behavior are zero, questioning: “Does anyone actually
believe this?” Even the most negativistic commentator (Burt)
began with the premise that “genetic differences matter for
human social outcomes – achievements, behavior, physical health,
personality – in a complex, context-sensitive way.” Yet our attempt
to describe how one might go about conceptualizing, identifying,
and leveraging causal genetic effects on human behavioral differ-
ences – the very effects that, we are told, everyone already believes
exist – inspired 23 widely divergent commentaries.

We consider the diversity of the commentators’ opinions, and
the intensity of their sentiments, a sign of success: our paper sur-
faced profound disagreements about what, in the study of human
behavior, constitutes an important problem versus a trivial one,
an interesting problem versus an uninteresting one, and – to
add to Lehrman’s list – an in-practice difficult problem versus
an in-principle impossible one. Commentators contested nearly
every single one of our arguments, but not everyone disagreed
with the same arguments, and the commentators also disagreed
with each other. Further complicating matters, a few commenta-
tors disagreed with themselves, advancing contradictory points
within the space of their short replies, and a few expressed
agreement-masquerading-as-disagreement – that is, they wrote
as if they were in sharp conflict with our target article, but they
were, in fact, restating positions we also advanced.

Our synthesis of these disparate viewpoints is necessarily
imperfect (like behavioral genetics itself!): it flattens multidimen-
sional arguments and glosses over nuance. We encourage readers
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to (re)read the individual commentaries to reconstitute the details
that have been lost. In particular, we recommend the commentar-
ies by Bourrat; Ross, Kendler, & Woodward, (Ross et al.);
Lynch, Brown, Strasser, & Yeo (Lynch et al.); Syed; and
Durlauf & Rustichini, as we thought these authors brought
fresh and incisive perspectives to a topic that can often recycle
the same stale points and counterpoints. With these caveats and
recommendations in mind, the commentaries on our target arti-
cle can be read as speaking to three overarching questions, which
we will consider in turn:

(1) What is a cause?
(2) How are randomized controlled trials (RCTs) and within-

family genome-wide association studies (GWASs) alike and
unalike?

(3) Is behavior genetics a qualitatively different enterprise?

R2. What is a cause?

Even before genomic data entered the mix, commentators dis-
agreed about what, exactly, made something a “cause,” and
what was needed to infer a causal relationship. Ross et al. aptly
summarized our treatment of causal inference:

M&H adopt a broadly “interventionist” treatment of causation – the min-
imal condition for some factor C to count as a cause for an outcome E is
that if, hypothetically, unconfounded manipulations of C were to be per-
formed these would lead to changes in E. In the familiar case of a random-
ized experiment, this leads to the conclusion that an average causal effect
(ACE) is a legitimate causal notion. M&H observe that an ACE can be
present even though C does not have a uniform effect, even though a sim-
ilar ACE may not be present in populations different from the population
from which the experimental sample was drawn, and even though the
experiment tells us nothing about the mechanism by which Cs cause
Es. We agree.

Their endorsement of our perspective on causation is not surpris-
ing (but is reassuring), as our understanding of causation was
strongly informed by Woodward’s (2005) previous work, particu-
larly his book Making Things Happen. This interventionist per-
spective on what makes something a cause continues the
lineage of Holland’s (1986) decree: “No causation without manip-
ulation” – even if that manipulation can happen only hypotheti-
cally, that is, in the form of a thought experiment.

It turns out that not everyone is a Holland acolyte. Some com-
mentators emphasized regularity accounts of causation (Mill,
1843/2002), which prioritize concepts like temporal precedence
and the repeated co-occurrence of X and Y. Hart &
Schatschneider defined causation as follows: “the cause must pre-
cede the effect, second, the cause must be related to the effect, and
third, we can find no plausible explanation for the effect other
than the cause.” Likewise, Tarchi, Merola, Castellini, & Ricca
(Tarchi et al.) suggested that “[r]ecent developments in the regu-
larity theory of causation (based on the premises that causes are
regularly followed by their effects) have allowed for a precise esti-
mation and quantification of confidence in causal relationships.”
Other commentators noted or implied that causation could
(should?) be conceptualized in terms of prediction (Shen &
Feldman) or mechanism (Smith & Downes).

A complete defense of a broadly interventionist treatment of
causation is obviously beyond the scope of this reply. “What is
appropriately considered a cause?” and “What is appropriately
considered evidence for a cause?” are questions that occupy entire

careers. More simply, we have two recommendations to readers
who are sifting through the various comments.

First, we ask you to reflect on how you typically answer those
questions when the causes under consideration are not genetic in
nature. Imagine, for instance, that you were reviewing a paper
showing that children whose families were randomly selected to
receive housing vouchers to move out of low-income neighbor-
hoods were more likely, on average, to attend college (Chetty,
Hendren, & Katz, 2016). Would you object if the authors con-
cluded that their results were consistent with a causal effect of
neighborhood environment on educational attainment? Even if
the effect increased college attendance by only 2.5 percentage
points? Even if you couldn’t perfectly predict who would go to
college just from knowing whether they moved? Even if the
authors could only speculate about the mechanisms linking
neighborhood characteristics with educational attainment? Even
if the neighborhoods to which people moved were all different
from one other, such that everyone in the “treatment” group expe-
rienced quite different treatments?

Your answers to such questions are informative about what
you already think is, and is not, necessary to infer causation,
and what you believe to be the scope of that causal inference.
We suggest keeping these priors in mind when considering the
question of what it means for genes to be causal. Consistency
might be the “hobgoblin of little minds” (Emerson, 1841/1993),
but in this case, we think some semantic and conceptual consis-
tency about what makes something a “cause” is important for
empirical design, statistical interpretation, scientific theory-
building, and policy application. Referring back to the Lehrman
quotation that we used as an epigraph to this reply, we urge
you to avoid using the word “cause” differently at different times.

Second, we encourage you to remember that the binary judg-
ment of whether or not X is a cause of Y is not the only judgment
on the table. As Cerezo reminded us in her comment, there are
“metaphysical tools” in our toolbox for describing and differenti-
ating among types of causes (see also Kinney, 2019; Ross, 2021,
2022). As we described in our target article, and as we will con-
tinue to describe in this reply, inferring that X caused Y is one
of the first steps toward understanding the X–Y relationship,
not the last.

R3. How are RCTs of environmental interventions and
within-family GWASs alike and unalike?

In our target article, we described how humans have two copies of
every gene, and offspring inherit, at random, just one of them.
Because genotypes are randomly “assigned,” conditional on the
parental genotypes, average phenotypic differences between fam-
ily members who have been randomly assigned to different geno-
types are conceptually analogous to the average difference
between people who have been randomly assigned to treatment
and control groups in a randomized controlled trial (RCT).
That is, some genetic designs, because they capitalize on the ran-
domness of genetic inheritance within families, can estimate the
average causal effect of genotypes on phenotypes.

Many of the commentators focused on what they perceived to
be the limits of that analogy. Most commonly, they described
desirable features of RCTs that they held to be lacking in a within-
family genetic study, claiming that (1) only RCTs involve a
manipulation of the causal stimulus, (2) RCTs have greater uni-
formity of the causal stimulus, and (3) RCTs give more actionable
information. A few commentators took a different tack, pointing
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out the ways in which within-family genetic studies share undesir-
able qualities of RCTs, in particular that (4) RCTs make an unsat-
isfactory trade-off between internal validity and external validity.
Although many of these points were incisive, we believe that the
gap between within-family genetic studies and nearly all RCTs in
the social and behavioral sciences is smaller than most comment-
ers acknowledged.

R3.1. Which designs involve a randomized manipulation?

Some commentators disagreed with the fundamentals of our anal-
ogy. For instance, Hart & Schatschneider objected to comparing
within-family genetic studies to RCTs on the grounds that the
former “do not have a manipulation,” whereas Kaplan & Bird
implied that only RCTs have a “randomizing element.” We dis-
agree. Although there is no artificial manipulation of the genome
in human behavioral genetics, the conception of every human
involves a natural randomized manipulation of genetic material.
Indeed, it’s ironic that Hart & Schatschneider warned against
“forcing the language of experiments … on within-family
designs,” because the language of experiments actually comes
from genetics! In his foundational work on experimental designs,
Fisher named experimental “factors” after “Mendelian factors,”
and strove to create randomization schemes that mimicked
the randomization of genetic inheritance. In their comment,
Pingault, Fearon, Viding, Davies, Munafò, & Davey Smith
(Pingault et al.) quoted Fisher (1952) on exactly this point:

The parallel drawn by [Madole & Harden] was made explicitly by Fisher
who established a direct filiation between the (artificially) randomized
design he theorized and the (natural) randomization of genetic material
at conception, in his words: “the factorial method of experimentation,
now of lively concern so far afield as the psychologists, or the industrial
chemists, derives its structure and its name, from the simultaneous inheri-
tance of Mendelian factors.” (emphasis added)

R3.2. Which designs are complicated by causal stimulus
heterogeneity?

In our target article, we discussed the ways in which causal effects
can be non-uniform, in that they can produce heterogeneous
effects across individuals because of moderation by other causal
factors. Lynch et al. incisively raised the issue of another source
of heterogeneity, causal stimulus heterogeneity, when not everyone
in the “treatment” group receives the same causal treatment.
Causal stimulus heterogeneity is patently a problem when using
polygenic scores (PGSs), which aggregate effects across very
many single-nucleotide polymorphisms (SNPs): two people
might have equivalently high or low PGS values, but arrive
there via non-overlapping sets of SNPs. Lynch et al. cleverly anal-
ogized a PGS to a “a drug with thousands of ingredients of small
efficacy, where each pill has one ingredient or an alternative at
random according to a defined chance procedure.”

Ross et al. raised a similar concern, noting that it applies
not only to PGSs, but also to associations with individual
single-nucleotide polymorphisms (SNPs), because each SNP
“tags” information about other genetic variants (including
unmeasured variants) that are in linkage disequilibrium (LD)
with the focal SNP included in a genome-wide association
study (GWAS). They provided a similar analogy to Lynch et al.:

Assuming the random nature of meiosis, a GWAS corresponds to a huge
number of different randomized treatments in the population: e.g., A

versus C at SNP1, G versus T at SNP2 and so on. … Indeed, matters
are even more complex since haplotypes are randomized not SNPs. We
might perhaps conceptualize this as the assignment of randomized bottles
to subjects, each containing a mixture of different drugs.

Related concerns were raised by Borger, Weissing, & Boon
(Borger et al.) (“… thousands of single nucleotide polymor-
phisms (SNPs) are considered simultaneously”), and by
Pingault et al., who also analogized polygenic influences to a
drug cocktail, the formulation of which differs across people
(“… in this case, the ‘treatment’ is not well defined (in content
or timing) … [it is] like a drug RCT consisting of the simultane-
ous administration of hundreds of compounds”).

Lynch et al. correctly pointed out that one can still conclude,
on the basis of an appropriately randomized study, that a hetero-
geneous causal stimulus “works,” in that it has a non-zero average
treatment effect. But, figuring out how it works is be especially
challenging:

The high causal stimulus heterogeneity is likely to produce non-uniform
causal pathways from the very first steps, thus making it difficult or
impossible to trace mechanisms from particular drug ingredients [i.e.,
from particular genetic loci] given only associations between treatments
[i.e., PGSs] and outcomes.

We agree that causal stimulus heterogeneity does make mechanis-
tic understanding considerably more difficult. But, as we will fur-
ther explain, we do not think this is a problem that is unique, or
uniquely difficult, to the study of genetic causes.

Most discussions of causal stimulus heterogeneity implicitly or
explicitly contrasted the messiness of PGSs and SNP arrays with
the supposed homogeneity of the causal stimulus in RCTs.
Lynch et al., for instance, wrote: “In most RCTs, individuals in
the treatment group receive the same, or as similar as possible,
treatment or causal stimulus, such as a drug or educational inter-
vention (causal stimulus homogeneity).” Siegel made a similar
claim, writing that “RCTs of treatments that prove to be highly
efficacious directly demonstrate their greater uniformity of thera-
peutic effects.”

From our perspective as clinical psychologists who have
worked to deliver “empirically supported” psychotherapy to
patients in clinical practice, who have been therapists on RCTs
of novel psychotherapeutic interventions, and who have imple-
mented educational interventions in our own classrooms, these
characterizations of the alleged homogeneity of environmental
interventions sound disconnected from the reality of social and
behavioral science. Environmental interventions are, on the
whole, more like a PGS than they are like lithium: they are cock-
tails “with thousands of ingredients of small efficacy,” the formu-
lation of which differs across people.

This is perhaps most obvious in the case of therapeutic and
educational interventions delivered one-on-one. In an RCT of
cognitive behavioral therapy, for instance, the “underlying treat-
ment … may in a real sense differ for every single unit,” because
the content of every session is tailored specifically to the individ-
ual (Smith, 2022, p. 656). But even interventions that are not psy-
chotherapeutic might be, in practice, implemented in a highly
idiosyncratic way (see, e.g., an ethnography of welfare case work-
ers by Watkins-Hayes, 2009). And, many interventions in the
social and behavioral sciences package together multiple services,
not all of which are taken up (or taken up in the same way) by
every participant. Consider the High/Scope Perry Preschool
Program (HPPP), which we discussed in our target article. This
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intensive intervention combined attending preschool for 2.5
hours, 5 days a week, for 2 years, home visits by teachers for
1.5 hours per week, and monthly small groups for parents.
Given the complexity of the intervention, “one is still left without
actually being able to pinpoint what it was in the Perry Preschool
Project that actually influenced later adult outcomes” (Schneider
& Bradford, 2020, p. 52).

In this way, a binary variable reflecting the presence or absence
of intent-to-treat in an environmental RCT does not always, or
even usually, give us granular information about the relevant
difference-maker(s) or assure that the relevant difference-maker
(s) are experienced homogenously across people. Rather, a binary
treatment indicator often represents a gross simplification (Heiler
& Knaus, 2021). The situation with oft-cited naturally occurring
environmental exposures may be of even lower resolution: “treat-
ments” like being drafted into the military (Angrist, 1990) or liv-
ing in a region of Holland occupied by the Nazis (Stein, Susser,
Saenger, & Marolla, 1972) are hardly homogenous or
“well-defined.”

Thus, even as philosophers and plant geneticists extol the
homogeneity of environmental interventions in the social and
behavioral sciences, interventionists themselves paint quite a
different picture: “We must expect, study and capitalize on the het-
erogeneity that characterizes most effects in science” (Bryan,
Tipton, & Yeager, 2021, p. 986). In fact, environmental
interventionists sound remarkably like behavioral geneticists:
“The researcher faces a tough trade-off between interpretability
and statistical power or, put differently, between learning about
the effects of the underlying heterogeneous treatments and the
sample size available for studying each treatment” (Smith, 2022,
p. 656). These quotes illustrate that the problem of causal stimulus
heterogeneity, while definitely a formidable challenge to mechanis-
tic understanding, is not a challenge that is unique to the study of
genetic causes, but is rather a difficulty that besets most studies in
the social and behavioral sciences.

In light of this shared challenge, we wholeheartedly agree with
Bondarenko that the “‘second-generation’ goals of causal inquiry
in the context of human behavior cannot be achieved by genetics
alone, nor do genetically informed research designs provide the
only possible path toward mechanistic understanding.” Indeed,
at no point in our target article did we suggest that genetics can
achieve anything alone, nor did we suggest (as Smith &
Downes alleged) that we “hope to supplant” environmental stud-
ies. Although we are optimistic that deeper measurements of the
genome and further advances in fine-mapping and gene prioriti-
zation methods will result in a higher resolution understanding of
genetic difference-makers, we also think that behavior genetics
should incorporate more of the conceptual and methodological
tools developed by environmental interventionists who are taking
heterogeneity seriously, including methods for causal inference
when there are multiple versions of treatment (VanderWeele,
2022; VanderWeele & Hernan, 2013). As Durlauf & Rustichini
highlight, formal theoretical structures are needed to reveal
sources of heterogeneity and generate deeper causal explanations
of how biopsychosocial systems produce human behavior. Again,
we agree with commentators like Taylor, Weiss, & Marshall that
the “genome [is] one resource (among many) used by the devel-
opmental system to grow,” and indeed, our entire discussion of
average difference-makers as non-unitary causes is based on the
idea that genes “operate within intricate causal systems” (target
article, abstract). As we will discuss next, we also believe that,
by virtue of being a difference-making component of the causal

system, genetic data may play a key role in helping identify com-
plex etiological models.

R3.3. Which designs give actionable information?

One word that recurred throughout the commentaries was
“actionable.” Turkheimer intimated that knowledge of genetic
causes was not actionable because the effect sizes are too small:
“The actionable part of the [genotype-phenotype] correlation,
estimated as a real number in the form of a PGS, is … under
5% for even the most studied traits…” The 5% figure refers
to the within-family effect size of an educational attainment
polygenic score (PGS) on years of education in North American
samples who have “European” genetic ancestry. Effects of
this magnitude were trivialized as “weak” and “small and
indeterminate.”

We disagree with this characterization. An R2 of 5% is approx-
imately equal to a correlation (r) of 0.22, or to (assuming equal-
sized groups) a Cohen’s d of 0.46. By comparison, a study of
Swedish children who were adopted into better socioeconomic
circumstances found that adoption increased IQ scores, relative
to the children’s siblings who were reared by their biological par-
ents (Kendler, Turkheimer, Ohlsson, Sundquist, & Sundquist,
2015) by around 4.5 IQ points, or a Cohen’s d of 0.34. This effect
of “family environment” (certainly a heterogeneous causal stimu-
lus!) was described as “a significant advantage in IQ” (Kendler
et al., 2015, p. 4612). Another study of children randomized to
foster care, rather than to severely deprived institutional care,
found that foster care increased average IQ scores at age 12 by
d = 0.41 (Almas, Degnan, Nelson, Zeanah, & Fox, 2016). Yet
another study examined the effects of a major educational reform
in Sweden, which increased the number of years of compulsory
schooling, abolished academic tracking at grade six, and rolled-
out a unified national curriculum (Meghir & Palme, 2005).
Researchers leveraged the gradual implementation of the reform
across different areas in Sweden and concluded that the reform
increased years of schooling by about 3.5 months, d∼ 0.2. What
these examples illustrate is that the estimated causal effect of
the educational attainment PGS rivals the effect sizes that we
observe when people experience radically sweeping changes to
their environmental context.

Most effect sizes for specific environmental interventions are
even smaller than 5%, and this is exactly what we would expect
given the causal complexity of human behavior. Kraft (2020),
for instance, reviewed all of the educational studies funded by
the U.S. government’s Investing in Innovation fund, and found
that the median effect size was d = 0.03. They concluded: “effects
of 0.15 or even 0.10 SD should be considered large and impres-
sive” (p. 248). Yeager and Dweck (2020) similarly summarized:
“In the real world, single variables do not have huge effects.
Not even relatively large, expensive, and years-long reforms do.
If psychological interventions can get a meaningful chunk of a
.20 effect size on real-world outcomes in targeted groups, reliably,
cost-effectively, and at scale, that is impressive” (p. 1281). We
agree. Our conclusion that genetic effect sizes are, for some
phenotypes, impressive does not stem from grandiosity about
genetics, but rather from humility about the difficulty of specify-
ing any cause, artificially manipulated or naturally varying, that
accounts for even a few percentage points of the variance in com-
plex behavior.

Others pointed out that, unlike the results of some RCTs,
causal genetic effects are not directly actionable because we
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cannot artificially manipulate the genome on the basis of that
information. Pingault et al. wrote: “Thus, while RCTs can pro-
vide actionable evidence of a specific intervention’s efficacy, a
within-family genetic association only indicates the effect of
inheriting one variant or another.” Markon similarly pointed
out that “counterfactual theory … takes an unactionable episte-
mological stance: even if a counterfactual account informs about
what would have occurred had things been different, it does not
inform about what one can do now, given things as they are.”
Kaplan & Bird concurred: “[t]he ‘shallowness’ of the causal
knowledge gained in RCTs does not prevent them from being
useful guides to practice … the situation in behavior genetics is
nothing like this. Unlike in the case of RCTs, we cannot change
the genetic variants associated with the phenotypic variation –
and even if we could, doing so would be wildly irresponsible.”
We made a similar point in our target article, writing that
“even if we concede that, at a conceptual level, genes could
cause average differences in human behavior, at a practical
level, it is not readily apparent what we would do with this knowl-
edge.… [W]e cannot (and should not) readily apply knowledge
of genetic causes to change the genomes of large swathes of
the population in the hopes of changing their outcomes” (target
article, sect. 1.2, para. 6).

Given that we are not planning to change people’s genotypes,
Kaplan & Bird ask, “what would we gain from even an
accurate finding that a particular genetic variant was associated
with downstream effects?” This is a curious question to pose, as
it is precisely the question that we address, at length, in the target
article on which they are supposedly commenting. Our short
answer is that we agree with Lewontin (1974) (quoted by
Turkheimer): “The analysis of causes in human genetics is
meant to provide us with basic knowledge we require for correct
schemes of environmental modification and intervention”
(p. 409).

And, so far, the project of devising correct schemes of environ-
mental modification and intervention has been far less successful
than commonly imagined (Kraft, 2020). Given that there is clearly
room for improvement for successful identification of environ-
mental intervention targets, we agree with Bondarenko that one
“important role for genetic data” is as “controls in the study of
environmental variables … when applied with care, genetic con-
trols may help address some of the worries that our ‘first-
generation’ knowledge of environmental factors does not meet a
stringent epistemic standard.” We also agree with commentators
who pointed out that that genetic results can be usefully exploited
in Mendelian randomization studies (Pingault et al.) for the
study of phenotypic causation (Pingault, Richmond, &
Davey Smith, 2022), which “given their speed and relative low
cost” are a “useful first-step to guide future randomization/inter-
vention studies” (Haworth & Wootton).

Finally, simply knowing that something has genetic causes –
even if you can’t identify them or manipulate them – can and
has changed clinical practice. For example, genetic research on
substance use disorders (SUDs) contributed to a paradigm shift
in conceptualizing addiction as a chronic disease that resides
within the body of the individual rather than as a moral deficit
that resides within their will (Hall, Carter, & Forlini, 2015;
Volkow & Koob, 2015). Now, educating patients about genetic
effects on addiction is a standard part of psychoeducation that
can reduce stigma and increase motivation for treatment
(Hassan et al., 2021; Ray, 2012). Causal knowledge has the
power to produce important changes in our intentions and

actions as scientists and clinicians, whether those causes can be
manipulated or not.

R3.4. Which designs have external validity?

Most commentators who were critical of our target article had the
intuition that RCTs in the social and behavioral sciences were
valuable research endeavors, and objected to our comparing
within-family genetic studies to them. A few commentators, how-
ever, brought up that RCTs also have their limitations, most
prominently, that they sacrifice external validity and generalizabil-
ity for the sake of internal validity. Shen & Feldman, for instance,
pointed out that causal knowledge built from within-family com-
parisons does not necessarily generalize on a population scale.
Borger et al. also decried the “limited ability…to generalize,”
and Siegel warned that GWAS results “may not apply to other
ethnic groups, a non-uniformity that may exacerbate health dis-
parities.” Syed offered a particularly trenchant summary of the
problem:

It is a fact of the design that RCTs sacrifice external validity for the sake of
internal validity, being high in efficacy, showing promising results in trials,
but low in effectiveness, or lack of results when translated to real-life con-
ditions … RCTs have been further criticized … for their lack of inclusion
of racial/ethnic minorities and thus limited generalizability.

For those interested in “humans in general” (Byrne & Olson),
causal knowledge that is not built from culturally and demo-
graphically representative samples – and therefore not expected
to apply equally across subgroups – is inherently flawed. As
Syed said, “no diversity in, no causes at all.” In contrast, others
were less interested in “humans in general” knowledge, and
were instead concerned with the “individual making important
life-choices” (Miller). And, in an interesting counterpoint to
Syed’s commentary, Bourrat suggested that, in some cases,
“local causal knowledge can be more useful for explanation and
intervention than more generalisable knowledge.” Similar to
Cerezo’s emphasis on triggering conditions, Bourrat pointed
out that accounting for context can reveal specificities about a
causal relationship that are masked when aggregating more
generally.

A medical example of the unique contribution of local causa-
tion comes from oncology research, where chemotherapy was
found to have no average impact on patient survival in a cohort
of individuals with stage IB lung cancer, but rather improved
patient survival only in those with a tumor size greater than 0.4
centimeters (Strauss et al., 2008). This is what
Bakermans-Kranenburg and Van Ijzendoorn (2015) referred to
as the “hidden efficacy of interventions.” The effect of chemother-
apy on patient survival cannot be expected to generalize across all
individuals with stage IB lung cancer, but it makes a significant
difference for some people.

This example illustrates that locality is not always a curse and
that non-portable causes can still sometimes be useful. Finding
that a genetic effect holds within a particular ancestral group
but not another, or is manifest under certain social conditions
but not others, or applies within families but not between them,
can be valuable because it allows us to build causal knowledge
within family or cultural systems.

The tension between Syed’s and Bourrat’s commentaries – both
of which we think make incisive and valuable points – highlights
what Richard Levins described as “the contradictory desiderata of
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generality, realism, and precision…” (Levins, 1966, p. 431). The
more we attempt to generalize, the more we collapse over dimen-
sions of variability that meaningfully influence the causal relation-
ship; the more we specify local variables, the more we restrict the
applicability of our findings (see Yarkoni [2022] and related com-
mentaries for a discussion about the precision of estimation/breadth
of generalization trade-off).

With these contradictory desiderata in mind, we strongly agree
with Syed that randomization is not enough: who is being ran-
domized across what dimensions of human experience? We
endorse their conclusion that “diversity is central to first-
generation studies” and that “the racial/ethnic diversity of samples
included in behavior genetic studies… must be central to any
effort to build generalizable causal knowledge.” Similarly, we
agree with Byrne & Olson that, behavior geneticists have a
responsibility to make “analytic choices” that “enhance the visibil-
ity of context,” in particular, sampling across sociocultural con-
texts that have heretofore been largely excluded from genetics
research. And, we agree with Eftedal & Thomsen that “[b]ehavio-
ral genetics should broaden its empirical scope beyond single-
culture WEIRD samples.”

Accordingly, we applaud recent efforts within the field to con-
duct GWASs in non-European ancestral groups (Gulsuner et al.,
2020; Pereira, Mutesa, Tindana, & Ramsay, 2021), advance meth-
odology to increase the integration of diverse samples in GWASs
(Mathur et al., 2022), improve discovery of within-family genetic
effects (Howe et al., 2022), develop equitable partnerships among
international institutions that promote resource sharing and
shared-infrastructure development (Martin et al., 2022), and
build more representative biobanks like the Trans-Omics for
Precision Medicine Program that allow for genetic discovery
within cultural subgroups (Popejoy & Fullerton, 2016). These ini-
tiatives represent important steps toward building more represen-
tative causal knowledge. Finally, we also echo Tarchi et al.’s
warning that an absolute requirement for a genetic study to
have a causal identification strategy or to provide mechanistic
understanding might have undesirable consequences for represen-
tation in genetics: “to consider ‘association studies’ as secondary
or even detrimental should be critically evaluated,” lest we exacer-
bating problems of exclusion in genetic research.

R4. Is behavior genetics a qualitatively different endeavor?

Although most commentators offered critical refinements to our
target article, suggesting ways to improve future studies or adding
nuance to the interpretation of existing effects, Burt denounced
the entire enterprise of behavior genetics as “impracticable.” In
particular, they argued, while genetics “has the potential to
advance understanding of human health and disease,” it was
not “appropriate” to apply genetic methods to the study of “com-
plex, social, non-disease achievements or behaviors.” (Kaplan &
Bird similarly distinguished between what they referred to as “dis-
ease GWAS” and “sociobehavioral GWAS.”) In contrast, we find
the distinction between “disease” and “complex, social (non-
disease)” behavior artificial, and think it is conceptually incoher-
ent to champion the virtues of medical genetics and criticize the
utility of behavior genetics in the same breath.

Despite the distinction between “disease” and “complex, social
non-disease” phenotypes being central to their argument, Burt
gives only a circular, “I know it when I see it” non-definition of
what should be, in their view, off-limits to genetic study: “complex
social traits are defined by social context and thus irreducibly

social.” But, the distinction between “disease” and “social (non-
disease)” phenotypes is as contentious, fluid, and historically
and culturally contingent, as the distinction between art and
obscenity. Consider again the example of substance use disorders
(SUDs) (a common subject of behavioral genetic research). In the
last two decades, it has become increasingly popular to view SUDs
under a medical model (Leshner, 1997). The American Society of
Addiction Medicine (ASAM) defines addiction as “a primary,
chronic disease of brain reward, motivation, memory and related
circuitry” (ASAM, 2017). Yet many scholars have pushed back on
the medicalization of SUDs (not to mention other psychiatric
conditions) (Borsboom, Cramer, & Kalis, 2019; Heilig et al.,
2021), arguing that it is “reductively inattentive to individual val-
ues and social context” (Courtwright, 2010, p. 144). This debate is
not without stakes: legal challenges to the incarceration of individ-
uals with substance-related charges have hinged on the question
of whether SUDs are “diseases” or “behaviors” (Commonwealth
v. Eldred, 2018). The most commonly used diagnostic system in
North American psychiatry, the DSM-V, offers no clarity, defin-
ing SUDs as a constellation of biological (e.g., physiological with-
drawal), behavioral (e.g., disengaging from hobbies to protect
use), and social (e.g., use interfering with relationships) symp-
toms. In the current debates about whether SUDs should be
viewed as a disease or as an “irreducibly social” behavior, we
hear echoes of previous and ongoing debates about how to best
understand, for example, melancholy, Asperger’s, psychosis, sex-
ual orientation. Burt would have us believe that they can resolve
these debates by fiat.

The distinction that Burt draws between “complex social
(non-disease)” versus “disease” maps onto their distinction
between “downward social causation,” in which “sociocultural
forces … sort and select individuals based on genetically influ-
enced traits” versus “upward genetic causation,” which operates
“from genetic differences to trait differences through biological
pathways.” The former is said to produce “artificial” genetic asso-
ciations; the latter “authentic” ones.

This pat story neglects the role of “downward social causation”
in disease and disabilities. Monogenic retinitis pigmentosa, for
instance, is a rare disease that causes progressive loss of sight;
an article in Genome Medicine summarized that the “first symp-
toms are retinal pigment on fundus evaluation, …eventually lead-
ing to legal blindness in a few decades” (Ayuso & Millan, 2010,
p. 1). What an interesting phrase, “legal blindness”! Blindness is
defined by visual acuity. What makes blindness “legal” is whether
legislators and policymakers deem the loss of visual acuity to be
sufficiently severe enough that one, for example, qualifies for
Social Security disability benefits, can no longer operate an auto-
mobile, gets special tax exemptions. A monogenic disorder with a
well-defined biological pathway causes legal blindness; legal blind-
ness is an artificially bounded category that is created when socio-
cultural forces – like the IRS – sort and select individuals based on
their genetically influenced traits. Legal blindness is genetically
caused and is “irreducibly social.”

And so is every other human phenotype. “Upward genetic cau-
sation” and “downward social causation” are always operating, on
every human phenotype, because humans are social animals.
Genes act on our bodies; society acts on our bodies. Society
changes our biology; our biology changes how society responds
to us. Every aspect of human life reflects these two streams of
influence. Sometimes one stream is a raging torrent; sometimes
the other is a trickle. But, regardless of their relative width and
depth and ferocity, where the streams of influence mix and mingle
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is, for us, the most scientifically interesting point of study.
Confluences are sacred.

R5. Parting thoughts

In closing, let us revisit a quote from Lynch et al.: “The high
causal stimulus heterogeneity is likely to produce non-uniform
causal pathways from the very first steps, thus making it difficult
or impossible to trace mechanisms from particular drug ingredi-
ents [i.e., from particular genetic loci] given only associations
between treatments [i.e., PGSs] and outcomes” (emphasis added).

The “or” in their sentence captures a core disagreement surfaced
in this set of commentaries: difficult or impossible? We think that it
will, in practice, be difficult – very difficult – to trace the mecha-
nisms by which polygenic causal signals make a difference for
human behavior, and to leverage that knowledge to improve
human lives. We do not think that it is, in principle, impossible.

Considered from one angle, our rejection of epistemological
skepticism is not the least bit surprising: we are psychologists, a
profession that, by definition, presupposes that we can know
things scientifically about why humans think, feel, and behave
the way they do, and strives to use that knowledge, even when
it is incomplete and flawed, to change how humans think, feel,
and behave. We are writing, after all, in a journal called
Behavioral and Brain Sciences. What is striking about these com-
mentaries is that some working scientists appear to embrace a
highly selective epistemological skepticism: knowing, in their
view, is impossible, but only knowing about genetic influences
on behavior, not about genetic influences on “disease,” or about
environmental influences on behavior.

We think this selective skepticism is incoherent, because, as
we’ve described in this reply, we see the conceptual and practical
difficulties in understanding genetic influences on behavior as
largely of a piece with other subfields. As Turkheimer (2012) so
pithily summarized: “Genome-wide association studies of behav-
ior are social science” (our emphasis added). If we are going to
continue our audacious attempts to study free-range humans sci-
entifically, then we will necessarily grapple with causal stimulus
heterogeneity and trade-offs between internal and external valid-
ity and small effect sizes and opaque mechanisms and uncertain
generalizability and “downward” social causation and causal com-
plexity, whether our work seeks to understand genetic causes or
environmental ones, whether our work focuses on diseases or
behaviors.

If we treat complexity as a “dead end” (Plomin & Daniels,
1987), if we dismiss attempts to understand it as “far-fetched”
(Kaplan & Turkheimer, 2021), if we arbitrarily declare some
areas of inquiry “inappropriate,” then we run the risk of missing
out on meaningful progress. “Even if we never understand biology
completely…we can understand enough to interfere” (Hayden,
2010, p. 667). The only way forward is to muddle through.
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